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Geometric Graphs

geometric (planar) graph:

• vertices: points in the plane

• edges: straight-line
segments



problem statement: Untangling Planar Graphs

given: a geometric planar graph G

task: move as few vertices as possible, such that the
resulting geometric planar graph is crossing-free;
that is, untangle G.

By Fáry / Wagner’s Theorem:
Every geometric planar graph can be untangled.
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planar graphs

open question:
Can planar graphs be untangled while keeping n

" vertices fixed?
[Pach and Tardos:2002, DCG]

Theorem
For every geom planar graph G,

fix(G) � (n/3)
1/4

[D. & Bose, Hurtado, Langerman, Morin, Wood, 2007]

geometric
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open question:
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previous work: subclasses of planar graphs

graph class G lower bound upper bound

cycles ⌦(n
2/3

) [Cibulka’08] O(n log n)
2/3 [Pach&Tardos’08]

trees
p

n/2 ? [Spillner & Wol↵]

outerplanar ⌦(
p

n) [Spillner & Wol↵] O(
p

n) [Goaoc et al.’07]

UNTANGLING



previous work

for G planar

• fix(G) � 3 [Goaoc et al, GD 2007]

• fix(G) � c
p

log n/ log log n [Spillner and Wol↵, 2007]
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· face collinear sets WANT

How can we findthem?
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to find?



IONSHIP

· face collinear sets WANT
How can we findthem?

· collinear set: Are they easick
to find?

⑧ Whatis theirrelationship, if any?
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Free Sets in Planar Graphs

Dujmović, Frati, Gonçalves, M, Rote Free Sets in Planar Graphs CC-BY
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Proper Good Curves and Collinear Sets

Theorem (Da Lozzo, Dujmović, Frati, Mchedlidze, Roselli (2018))

S is a collinear set i↵ some proper good curve contains S .

(1) , (2)

Dujmović, Frati, Gonçalves, M, Rote Free Sets in Planar Graphs CC-BY
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Proper Good Curves and Collinear Sets

Theorem (Da Lozzo, Dujmović, Frati, Mchedlidze, Roselli (2018))

S is a collinear set i↵ some proper good curve contains S .

Proof sketch:
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Proper Good Curves and Dual Cycles

Every proper-good curve containing k vertices gives a dual cycle of

length at least k .

What about the other direction?

Can we get a proper good curve containing many vertices from a long

dual cycle?

Dujmović, Frati, Gonçalves, M, Rote Free Sets in Planar Graphs CC-BY
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dual cycle?
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Dual Cycles—Circumference

The longest cycle in G
?
is called its circumference

Circumference of n-vertex 3-connected cubic (planar) G
?

Tait’s Conjecture (1884): 8G?
: c(G

?
) = n

Disproved by Tutte (1946): 9G?
: c(G

?
) < n

Grünbaum Walther (1973): 9G?
: c(G

?
) = O(n

0.9859
).

Barnette (1966): 8G?
: c(G

?
) = ⌦(log n).

Bondy and Simonovits (1980): 8G?
: c(G

?
) = e

⌦(
p
log n)

Jackson (1986): 8G?
: c(G

?
) = ⌦(n

0.6942
)

Billinski et al. (2011): 8G?
: c(G

?
) = ⌦(n

0.7532
)

Liu, Yu, Zhang (2019): 8G?
: c(G

?
) = ⌦(n

0.8
)
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Grünbaum Walther (1973): 9G?
: c(G

?
) = O(n

0.9859
).

Barnette (1966): 8G?
: c(G

?
) = ⌦(log n).

Bondy and Simonovits (1980): 8G?
: c(G

?
) = e

⌦(
p
log n)

Jackson (1986): 8G?
: c(G

?
) = ⌦(n

0.6942
)

Billinski et al. (2011): 8G?
: c(G

?
) = ⌦(n

0.7532
)

Liu, Yu, Zhang (2019): 8G?
: c(G

?
) = ⌦(n

0.8
)
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Dual Cycles and Proper Good Curves

Every dual cycle defines a proper good curve

But the curve contains no vertices!

Can we “bend” the curve to pick up some vertices?

Sometimes yes, sometimes no

u

C wi

wi�1

wj

wj+1 u

wi

wi�1

wj

wj+1
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Dujmović, Frati, Gonçalves, M, Rote Free Sets in Planar Graphs CC-BY

↓



Dual Cycles and Proper Good Curves

Every dual cycle defines a proper good curve

But the curve contains no vertices!

Can we “bend” the curve to pick up some vertices?

Sometimes yes, sometimes no

u

wi

wi�1

wj

wj+1 u

wi

wi�1

wj

wj+1
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A Bad Example

fk
f0

f1 f2 f3 f4 fk�1

⌧ = + ⇢

⌧ = 2k + 3,  = 4, ⇢ = 2k � 1

Dujmović, Frati, Gonçalves, M, Rote Free Sets in Planar Graphs CC-BY



Conclusion

Theorem: If G
?
has a cycle of lenth `, then G

?
has a cycle C

0
that

caresses ⌦(`/�4
) faces.

Consequence: Every n-vertex planar graph of maximum degree � has a

free set of size ⌦(n
0.8/�4

).

Open Problem: Eliminate the dependence on �.
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Proper Good Curves and Collinear Sets

Theorem (Da Lozzo, Dujmović, Frati, Mchedlidze, Roselli (2018))

S is a collinear set i↵ some proper good curve contains S .

Proof sketch:
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Theorem (Da Lozzo, Dujmović, Frati, Mchedlidze, Roselli (2018))

S is a collinear set i↵ some proper good curve contains S .

Proof sketch:
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Example

1

4

2

5

3

1
3

2

5

4

fix: 1, 2, 5

fix(G) def
=

the maximum integer t s.t. G can be untangled while
keeping t vertices fixed.



previous work: cycles

Can every cycle be untangled while keeping "n vertices fixed?
[Watanabe 1998]

• 9 inf. many cycles G with
fix(G)  c (n log n)

2/3. [Pach and Tardos:2002, DCG]



planar graphs

open question:
Can planar graphs be untangled while keeping n

" vertices fixed?
[Pach and Tardos:2002, DCG]

Theorem
For every geom planar graph G,

fix(G) � (n/3)
1/4

[D. & Bose, Hurtado, Langerman, Morin, Wood, 2007]



previous work: subclasses of planar graphs

graph class G lower bound upper bound

cycles ⌦(n
2/3

) [Cibulka’08] O(n log n)
2/3 [Pach&Tardos’08]

trees
p

n/2 ? [Spillner & Wol↵]

outerplanar ⌦(
p

n) [Spillner & Wol↵] O(
p

n) [Goaoc et al.’07]



previous work

for G planar

• fix(G) � 3 [Goaoc et al, GD 2007]

• fix(G) � c
p

log n/ log log n [Spillner and Wol↵, 2007]



Example
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fix: 1, 2, 5

fix(G) def
=

the maximum integer t s.t. G can be untangled while
keeping t vertices fixed.



how to untangle a cycle? fix(G) �
p

n

1

4

2

5

3

1

4

2

5

3
ccw ordering: 1, 4, 2, 5, 3

1

2

5

fix: 1, 2, 5

1
3

2

5

4

fix: 1, 2, 5

By Erdős-Szekeres Theorem, #fix vertices of geom cycles is at least
p

n.



general planar graphs: (wrong) idea

assume triangulations

C

G

1 C def
=

largest induced cycle in G.

2 untangle C while keeping |C|
1/2

vertices fixed.

3 move the rest of the vertices of G.
inside of C in the untangling.

if C is convex =) fix(G) �
p

log |C|
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two problems

(a) |C| may be of constant size.

(b) convexity of C in the untangling =) log best possible

fix for (b)

each face in the untangling of H is star-shaped
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two problems ...

(a) |C| may be of constant size.

(partial) fix for (a)

untangle a (more complex) induced subgraph H of G that
guarantees |H| =f(n) for all planar graphs.

Example:
H an embedded outerplanar subgraph of G.

By Moore’s bound, |H| � | log n/ log log n| =)

fix(G) � q
p

log n/ log log n

[Spillner and Wol↵]
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Frame

1 2

3

4 5

6

7

8
9

10

11

12

13

1 2

3

4 5

6

7

8
9

10

11

12

13

3

8

11

12

13

canonical ordering of G frame F



directed path in F

H def
=

a subgraph of G induced by a directed path in F .

H is then an embedded outerplanar in G.

Lemma
A subgraph H induced by a directed path in F can be untangled
wh ile keeping c

p
|H| vertices fixed.



two compatible subgraphs

chain in <F ) induces an embedded outerplanar subgraph H in G

antichain in <F ) ??? subgraph.

1 2

4 5

6

7

9

10

3

8

11

12

13



putting it all together

By Dilworth’s Theorem:
<F contains a chain of size

p
n, or an anti-chain of size

p
n.

geometric lemmas:

Lemma
A chain H in <F can be untangled while keeping c

p
|H| vertices

fixed.

Lemma
An antichain H can be untangled while keeping

p
|H| vertices

fixed.



summary and open problems

graph class G lower bound upper bound

planar ? [Pach&Tardos’02] O(
p

n) [Goaoc et al.’07]



summary and open problems

graph class G lower bound upper bound

planar ⌦(n
1/4

) O(
p

n) [Goaoc et al.’07]

open problem: Close the gap for planar graphs?

graph class G lower bound upper bound

cycles ⌦(n
2/3

) [Cibulka’08] O(n log n)
2/3 [Pach&Tardos’02]

trees
p

n/2 ? [Spillner & Wol↵’07]

outerplanar ⌦(
p

n) [Spillner & Wol↵] O(
p

n) [Goaoc et al.’07]
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trees-upper bound: fix(T) = 3
p

n � 3

Ppn

P1 P2 Ppn�1 Ppn

P1 P2 Ppn�1 Ppn

T3 Tpn�1
T1

T2

Tpn
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