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Geometric Graphs

geometric (planar) graph:
e vertices: points in the plane

e edges: straight-line
segments




problem statement: Untangling Planar Graphs

given: a geometric planar graph G

task: move as few vertices as possible, such that the

resulting geometric planar graph is crossing-free;
that is, untangle G.



problem statement: Untangling Planar Graphs

given: a geometric planar graph G

task: move as few vertices as possible, such that the

resulting geometric planar graph is crossing-free;
that is, untangle G.

By Fary / Wagner's Theorem:
Every geometric planar graph can be untangled.






question:

Can pIanar graphs be untangled while keeping n€ vertices fixed?
7eorre4m¢ [Pach and Tardos:2002, DCG]
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previous work: subclasses of planar graphs

UNTANELIN 6~

graph class G ‘

lower bound

upper bound

cycles Q(n?/3) [Cibulka'08] O(nlog n)?/3 [Pach&Tardos 08]
trees \/n/2 ? [Spillner & Wolff]

outerplanar

Q(+/n) [Spillner & Wolff]

O(+/n) [Goaoc et al.'07]




previous work un‘fanﬁl{u,a,

for G planar
e fix(G) > 3 [Goaoc et al, GD 2007]

e fix(G) > c/logn/loglogn [Spillner and Wolff, 2007]
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1. How far or close are parameters 9(G) and 9(G)? It seems that a priori we even
cannot exclude equality. To clarify this question, it would be helpful to (dis)prove
that every collinear set in any straight line drawing is free.
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Free Sets in Planar Graphs
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Proper Good Curves and Collinear Sets

Theorem (Da Lozzo, Dujmovi¢, Frati, Mchedlidze, Roselli (2018))

S is a collinear set iff some proper good curve contains S.
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Proper Good Curves and Collinear Sets

Theorem (Da Lozzo, Dujmovi¢, Frati, Mchedlidze, Roselli (2018))
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There exists n-vertex planar graphs whose largest free-set has size
O(nlog23 22) C O(n0.9859) L d W
Eri G
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@ Every proper-good curve containing k vertices gives a dual cycle of
length at least k.
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Proper Good Curves and Dual Cycles

@ Every proper-good curve containing k vertices gives a dual cycle of
length at least k.

@ What about the other direction?

o Can we get a proper good curve containing many vertices from a long
dual cycle?
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@ The longest cycle in G* is called its circumference



@ The longest cycle in G* is called its circumference
e Circumference of n-vertex 3-connected cubic (planar) G*



@ The longest cycle in G* is called its circumference
e Circumference of n-vertex 3-connected cubic (planar) G*
o Tait's Conjecture (1884): VG* : ¢(G*) =n



Dual Cycles—Circumference

@ The longest cycle in G* is called its circumference

o Circumference of n-vertex 3-connected cubic (planar) G*
o Tait's Conjecture (1884): VG* : ¢(G*) =n
o Disproved by Tutte (1946): 3G* : c(G*) < n
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Dual Cycles—Circumference

@ The longest cycle in G* is called its circumference

o Circumference of n-vertex 3-connected cubic (planar) G*
o Tait's Conjecture (1884): VG* : ¢(G*) =n
o Disproved by Tutte (1946): 3G* : c(G*) < n
o Griinbaum Walther (1973): 3G* : ¢(G*) = O(n%989).
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Dual Cycles—Circumference

@ The longest cycle in G* is called its circumference

o Circumference of n-vertex 3-connected cubic (planar) G*
Tait's Conjecture (1884): VG* : ¢(G*) =n

Disproved by Tutte (1946): 3G* : ¢(G*) < n

Griinbaum Walther (1973): 3G* : ¢(G*) = O(n%%%9).
Barnette (1966): VG* : ¢(G*) = Q(log n).
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Dual Cycles—Circumference

@ The longest cycle in G* is called its circumference

o Circumference of n-vertex 3-connected cubic (planar) G*
Tait's Conjecture (1884): VG* : ¢(G*) =n

Disproved by Tutte (1946): 3G* : ¢(G*) < n

Griinbaum Walther (1973): 3G* : ¢(G*) = O(n%%%9).
Barnette (1966): VG* : ¢(G*) = Q(log n).

Bondy and Simonovits (1980): YG* : ¢(G*) = eX(VIogn)
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Dual Cycles—Circumference

@ The longest cycle in G* is called its circumference

o Circumference of n-vertex 3-connected cubic (planar) G*

Tait's Conjecture (1884): VG* : ¢(G*) =n

Disproved by Tutte (1946): 3G* : ¢(G*) < n
Griinbaum Walther (1973): 3G* : ¢(G*) = O(n%%%9).
Barnette (1966): VG* : ¢(G*) = Q(log n).

Bondy and Simonovits (1980): YG* : ¢(G*) = eX(VIogn)
Jackson (1986): YG* : c(G*) = Q(n®694?)
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Dual Cycles—Circumference

@ The longest cycle in G* is called its circumference

o Circumference of n-vertex 3-connected cubic (planar) G*
o Tait's Conjecture (1884): VG* : ¢(G*) =n

Disproved by Tutte (1946): 3G* : ¢(G*) < n
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Dual Cycles—Circumference

@ The longest cycle in G* is called its circumference

o Circumference of n-vertex 3-connected cubic (planar) G*

o Tait's Conjecture (1884): VG* : ¢(G*) =n

Disproved by Tutte (1946): 3G* : ¢(G*) < n
Griinbaum Walther (1973): 3G* : ¢(G*) = O(n%%%9).
Barnette (1966): VG* : ¢(G*) = Q(log n).

Bondy and Simonovits (1980): YG* : ¢(G*) = eX(VIogn)
Jackson (1986): YG* : c(G*) = Q(n®694?)

Billinski et al. (2011): VG* : ¢(G*) = Q(n%7532)

Liu, Yu, Zhang (2019): VG* : ¢(G*) = Q(n°8)
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o Every dual cycle defines a proper good curve




o Every dual cycle defines a proper good curve

@ But the curve contains no vertices!




Dual Cycles and Proper Good Curves

@ Every dual cycle defines a proper good curve
@ But the curve contains no vertices!

@ Can we “bend” the curve to pick up some vertices?
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Dual Cycles and Proper Good Curves

Every dual cycle defines a proper good curve
But the curve contains no vertices!

Can we “bend” the curve to pick up some vertices?

Sometimes yes, sometimes no
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Dual Cycles and Proper Good Curves

Every dual cycle defines a proper good curve
But the curve contains no vertices!

Can we “bend” the curve to pick up some vertices?

Sometimes yes, sometimes no
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Every dual cycle defines a proper good curve
But the curve contains no vertices!

Can we “bend” the curve to pick up some vertices?
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Dual Cycles and Proper Good Curves

Every dual cycle defines a proper good curve
But the curve contains no vertices!

Can we “bend” the curve to pick up some vertices?

Sometimes yes, sometimes no

BN Ve
SN ETADNN

Dujmovi¢, Frati, Gongalves, M, Rote Free Sets in Planar Graphs CC-BY



Dual Cycles and Proper Good Curves

Every dual cycle defines a proper good curve
But the curve contains no vertices!

Can we “bend” the curve to pick up some vertices?

Sometimes yes, sometimes no
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Dual Cycles and Proper Good Curves

Every dual cycle defines a proper good curve
But the curve contains no vertices!

Can we “bend” the curve to pick up some vertices?

Sometimes yes, sometimes no
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A Bad Example
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Theorem: If G* has a cycle of lenth ¢, then G* has a cycle C’ that
caresses Q(¢/A%) faces.

Consequence: Every n-vertex planar graph of maximum degree A has a
free set of size Q(n%8/A%).

Open Problem: Eliminate the dependence on A.
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Proper Good Curves and Collinear Sets

Theorem (Da Lozzo, Dujmovi¢, Frati, Mchedlidze, Roselli (2018))

S is a collinear set iff some proper good curve contains S.
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Proper Good Curves and Collinear Sets

Theorem (Da Lozzo, Dujmovi¢, Frati, Mchedlidze, Roselli (2018))

S is a collinear set iff some proper good curve contains S.

Proof sketch:
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Proper Good Curves and Collinear Sets

Theorem (Da Lozzo, Dujmovi¢, Frati, Mchedlidze, Roselli (2018))

S is a collinear set iff some proper good curve contains S.

Proof sketch:
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Proper Good Curves and Collinear Sets

Theorem (Da Lozzo, Dujmovi¢, Frati, Mchedlidze, Roselli (2018))

S is a collinear set iff some proper good curve contains S.

Proof sketch:
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Proper Good Curves and Collinear Sets

Theorem (Da Lozzo, Dujmovi¢, Frati, Mchedlidze, Roselli (2018))

S is a collinear set iff some proper good curve contains S.

Proof sketch:
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Proper Good Curves and Collinear Sets

Theorem (Da Lozzo, Dujmovi¢, Frati, Mchedlidze, Roselli (2018))

S is a collinear set iff some proper good curve contains S.

Proof sketch:
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Example

4
2 2
3
> 1 1
4
5 5
3 fix: 1,2,5

fix(G) d9¢f the maximum integer t s.t. G can be untangled while
keeping t vertices fixed.



previous work: cycles

Can every cycle be untangled while keeping en vertices fixed?
[Watanabe 1998]

e T inf. many cycles G with
fix(G) < c(nlogn)?/3. [Pach and Tardos:2002, DCG]



planar graphs

open question:

Can planar graphs be untangled while keeping n® vertices fixed?
[Pach and Tardos:2002, DCG]

Theorem
For every geom planar graph G,

fix(G) > (n/3)/*

[D. & Bose, Hurtado, Langerman, Morin, Wood, 2007]



previous work: subclasses of planar graphs

graph class G ‘

lower bound

upper bound

cycles Q(n?/3) [Cibulka'08] O(nlog n)?/3 [Pach&Tardos 08]
trees \/n/2 ? [Spillner & Wolff]

outerplanar

Q(+/n) [Spillner & Wolff]

O(+/n) [Goaoc et al.'07]




previous work

for G planar
e fix(G) > 3 [Goaoc et al, GD 2007]

e fix(G) > c/logn/loglogn [Spillner and Wolff, 2007]



Example

3 fix: 1,2,5



how to untangle a cycle? fix(G) > +/n \

e
2 2 7 N
S .
\
// !
|
> 1 { ® 1
\ l
\ /
\ /
5 5 .\\ ///
\‘___‘3
3 ccw ordering: 1,4,2,5,3
2 2
3
1 1
4
5 5
fix: 1,2,5 fix: 1,2,5

By Erdés-Szekeres Theorem, #fix vertices of geom cycles is at least 4/n.



general planar graphs: (wrong) idea

assume triangulations

@ C df Jargest induced cycle in G.
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@ C df Jargest induced cycle in G.

@ untangle C while keeping |C|1/2
vertices fixed.



general planar graphs: (wrong) idea

assume triangulations

@ C df Jargest induced cycle in G.

@ untangle C while keeping |C|1/2
vertices fixed.

C © move the rest of the vertices of G.
inside of C in the untangling.



general planar graphs: (wrong) idea

assume triangulations

@ C df Jargest induced cycle in G.

@ untangle C while keeping |C|1/2
vertices fixed.

C © move the rest of the vertices of G.
inside of C in the untangling.

if C is convex = fix(G) > /log |C]|



two problems

(a) |C| may be of constant size.

(b) convexity of C in the untangling => log best possible



two problems

(a) |C| may be of constant size.

(b) convexity of C in the untangling => log best possible

fix for (b)

each face in the untangling of H is star-shaped



two problems ...

(a) |C| may be of constant size.



two problems ...

(a) |C| may be of constant size.

(partial) fix for (a)
untangle a (more complex) induced subgraph H of G that
guarantees |H| =f(n) for all planar graphs.



two problems ...

(a) |C| may be of constant size.

(partial) fix for (a)
untangle a (more complex) induced subgraph H of G that
guarantees |H| =f(n) for all planar graphs.

Example:
H an embedded outerplanar subgraph of G.

By Moore's bound, |H| > |logn/ loglog n| =
fix(G) > q/log n/ log log n

[Spillner and Wolff]






directed path in F

H d¢f 3 subgraph of G induced by a directed path in F.

H is then an embedded outerplanar in G.

Lemma
A subgraph H induced by a directed path in F can be untangled
wh ile keeping c\/|H| vertices fixed.



two compatible subgraphs

chain in <z = induces an embedded outerplanar subgraph H in G
antichain in <z = 777 subgraph.




putting it all together

By Dilworth’s Theorem:
< # contains a chain of size 4/n, or an anti-chain of size 4/n.

geometric lemmas:

Lemma
A chain H in <z can be untangled while keeping c./|H| vertices
fixed.

Lemma
An antichain H can be untangled while keeping \/|H| vertices
fixed.



summary and open problems

‘ graph class G ‘ lower bound ‘ upper bound ‘
‘ planar ‘ ? [Pach&Tardos'02] ‘ O(+/n) [Goaoc et al.'07] ‘




summary and open problems

‘ graph class G ‘ lower bound ‘

upper bound ‘

‘ planar

‘ Q(n'/%) ‘ O(+/n) [Goaoc et al.'07] ‘

open problem: Close the gap for planar graphs?

‘ graph class G ‘

lower bound

upper bound

cycles Q(n?/3) [Cibulka'08] O(nlogn)?/3 [Pach&Tardos'02]
trees \/n/2 ? [Spillner & Wolff'07]

outerplanar

Q(+/n) [Spillner & Wolff]

O(+/n) [Goaoc et al.'07]
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trees-upper bound: fix(T) = 34/n — 3
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