Problem 2:

Di Pach, Tordos 7 2002

Con every geometric planar graph be untangled while keepsing = ne vertices fixed?

Problem 2:

Di Pach, Tordes 7 2002

Con every geometric planar graph be untangled while keeping = n vertices fixed?

+SL in BB

Geometric Graphs

geometric (planar) graph:

- vertices: points in the plane
- edges: straight-line segments

problem statement: Untangling Planar Graphs

given: a geometric planar graph G

task: move as few vertices as possible, such that the resulting geometric planar graph is crossing-free; that is, untangle **G**.

problem statement: Untangling Planar Graphs

given: a geometric planar graph G

task: move as few vertices as possible, such that the resulting geometric planar graph is crossing-free;

that is, untangle **G**.

By Fáry / Wagner's Theorem: Every geometric planar graph can be *untangled*. Planarity game

question:

Can planar graphs be untangled while keeping \mathbf{n}^{ε} vertices fixed? *qeometerc* [Pach and Tardos:2002, DCG]

question:

Can planar graphs be untangled while keeping \mathbf{n}^{ϵ} vertices fixed?

[Pach and Tardos:2002, DCG]

Can you do it for + geom. cycle/pah?

Untangling a path

Untangling a path

A FACT:

Collinear Sols

Dets S = V(6) is a collinear set of G if G has a conssing-free SL drawing with S on a line.

Dets $S \subseteq V(6)$ is a collinear set of G if G has a crossing-free SL drawing with S on a line.

Collinear Scts

Dets S = V(6) is a collinear set of 6 if G has a crossing-free SL drawing with 5 on a line.

Collinear Scts - do they help?

Collinear Sets - do they help?

Collinear Scts - do they help?

Collinear Sets - do they help? If this drawing 3 then 6 can be untangled while keeping 5 fixed by the fact. then collinear set S usefull

Collinear sets - do they help?

Free Collinear Scts

a b c d e l

can "feely more" on l and still 6 has CFST2.

Free Collinear Scts

Why Free Collinear Sets?

Why Free Collinear Sds?

If geometric planar graph G $fix (G) \ge 7$ FREE COL. SET of G

graph dasses with large free col. Sets?

- path?

- cyde? - outoplanar?

- planar?

graph classes with large free col. Sets?

euntaugled 52 (n) - path / n - cyde? - outorplanar?

- planar?

graph classes with large free col. Sets? UNTANGLE - path / n

- dyde V h-1

- outorplanar?

- planar?

a b c d e

a b c d e

previous work: subclasses of planar graphs

UNTANGLIN 6-

graph class ${\cal G}$	lower bound	upper bound	
cycles	$\Omega(n^{2/3})$ [Cibulka'08]	$\mathcal{O}(n \log n)^{2/3}$ [Pach&Tardos'08]	
trees	$\sqrt{n/2}$? [Spillner & Wolff]	
outerplanar	$\Omega(\sqrt{n})$ [Spillner & Wolff]	$\mathcal{O}(\sqrt{n})$ [Goaoc <i>et al.</i> '07]	

previous work untangling

for **G** planar

- $fix(G) \geq 3$
- $fix(G) \ge c \sqrt{\log n / \log \log n}$

[Goaoc et al, GD 2007]

[Spillner and Wolff, 2007]

Graph classes with large free col. Sets?

\$\sigma 2 \left(n^{\xi}\right)\$

FREE COLLINGAR SETS SHE:

- toth / n - cycle / n-1 - outorplanar?
- plauar?

More reasons to care

•

•

Frec Set

More reasons to care

S is free collinear => S is free

graph classes with large free col. Sets? \rightarrow 52 (n^{ϵ}) FREE COLLINEAR SETS SHE: - path / n Deasier !

- cycle / n-1 - outoplanar?

- planar?

PLANAR GRAPHS

· face collinear fets WANT
HOW dan me find them?

· face collinear fets WANT How dan we find them?

· collinear set: Are they casiek to find?

· face collinear sets WANT How dan we find them?

· collinear set: Are they casiek to find?

1 • what is their relationship, if any 6

RELATIONSHIP

collinear sets and free col. rets?

[Ravsky & Vorbitsky 2006]

1. How far or close are parameters $\tilde{v}(G)$ and $\bar{v}(G)$? It seems that a priori we even cannot exclude equality. To clarify this question, it would be helpful to (dis)prove that every collinear set in any straight line drawing is free.

RELATIONSHIP

- Llast

The [D., Frati, gonçalves, Morin, Rote] 2018 Every collinear set es free (collinear) set.

Free Sets in Planar Graphs

RELATIONSHIP

face collinear fets WANT
How dan we find them?

collinear set:

RELATIONSHIP

face collinear fets WANT

HOW dan we find them? collinear set: WANT by finding these

FINDING COLINEAR SETS

From geometry do dopology

FINDING COLINEAR SETS From geometry do dopology R 600D CURVE

Proper Good Curves and Collinear Sets

Theorem (Da Lozzo, Dujmović, Frati, Mchedlidze, Roselli (2018))

S is a collinear set iff some proper good curve contains S.

Proper Good Curves and Collinear Sets

Theorem (Da Lozzo, Dujmović, Frati, Mchedlidze, Roselli (2018))

S is a collinear set iff some proper good curve contains S.

Proof sketch:

RELATIONSHIP

Jaco collinear fets: WANT

collinear set: WANT

How do we find it?

RELATIONSHIP

face collinear fets: WANT collinear set: WANT

Exproper good curve: WANT
LD LOOK for this

What is the largest 1 that t planar 6 has?

PROPER GOOD CURYES
What is the largest 1 that t planar 6 has?

not linear: [Raysky & Vorbitsky 2007, 2011]

There exists n-vertex planar graphs whose largest free set has size $O(n^{\log_{23} 22}) \subseteq O(n^{0.9859})$ Propor good culwe

PROPER GOOD CURYES what is the largest 1 that & planar 6 has? not lineau [Ravsky & Verbitsky 2007, 2011] at least S2(Un)
[Bose, D., Hurtado, Langerman, Morin, Wood, 2007] Desolves untangleing question with \$\frac{1}{2}\times \(\begin{align*} \le \align* \le

Frame

canonical ordering of ${\cal G}$

Frame

canonical ordering of ${\cal G}$

Frame

Proper Good Curves and Dual Cycles past posults

• Every proper-good curve containing k vertices gives a dual cycle of length at least k.

Proper Good Curves and Dual Cycles

 Every proper-good curve containing k vertices gives a dual cycle of length at least k.

- What about the other direction?
- Can we get a proper good curve containing many vertices from a long dual cycle?

• The longest cycle in G^* is called its *circumference*

- The longest cycle in G^* is called its *circumference*
- Circumference of *n*-vertex 3-connected cubic (planar) G^*

- The longest cycle in G^* is called its *circumference*
- Circumference of *n*-vertex 3-connected cubic (planar) G^*
 - Tait's Conjecture (1884): $\forall G^* : c(G^*) = n$

- The longest cycle in G^* is called its *circumference*
- Circumference of *n*-vertex 3-connected cubic (planar) G^*
 - Tait's Conjecture (1884): $\forall G^* : c(G^*) = n$
 - Disproved by Tutte (1946): $\exists G^* : c(G^*) < n$

- The longest cycle in G^* is called its *circumference*
- Circumference of *n*-vertex 3-connected cubic (planar) G^*
 - Tait's Conjecture (1884): $\forall G^* : c(G^*) = n$
 - Disproved by Tutte (1946): $\exists G^* : c(G^*) < n$
 - Grünbaum Walther (1973): $\exists G^* : c(G^*) = O(n^{0.9859})$.

- The longest cycle in G^* is called its *circumference*
- Circumference of *n*-vertex 3-connected cubic (planar) G^*
 - Tait's Conjecture (1884): $\forall G^* : c(G^*) = n$
 - Disproved by Tutte (1946): $\exists G^* : c(G^*) < n$
 - Grünbaum Walther (1973): $\exists G^* : c(G^*) = O(n^{0.9859})$.
 - Barnette (1966): $\forall G^* : c(G^*) = \Omega(\log n)$.

- The longest cycle in G^* is called its *circumference*
- Circumference of *n*-vertex 3-connected cubic (planar) G^*
 - Tait's Conjecture (1884): $\forall G^* : c(G^*) = n$
 - Disproved by Tutte (1946): $\exists G^* : c(G^*) < n$
 - Grünbaum Walther (1973): $\exists G^* : c(G^*) = O(n^{0.9859})$.
 - Barnette (1966): $\forall G^* : c(G^*) = \Omega(\log n)$.
 - Bondy and Simonovits (1980): $\forall G^* : c(G^*) = e^{\Omega(\sqrt{\log n})}$

- The longest cycle in G^* is called its *circumference*
- Circumference of *n*-vertex 3-connected cubic (planar) G^*
 - Tait's Conjecture (1884): $\forall G^* : c(G^*) = n$
 - Disproved by Tutte (1946): $\exists G^* : c(G^*) < n$
 - Grünbaum Walther (1973): $\exists G^* : c(G^*) = O(n^{0.9859})$.
 - Barnette (1966): $\forall G^* : c(G^*) = \Omega(\log n)$.
 - Bondy and Simonovits (1980): $\forall G^* : c(G^*) = e^{\Omega(\sqrt{\log n})}$
 - Jackson (1986): $\forall G^* : c(G^*) = \Omega(n^{0.6942})$

- The longest cycle in G^* is called its *circumference*
- Circumference of *n*-vertex 3-connected cubic (planar) G^*
 - Tait's Conjecture (1884): $\forall G^* : c(G^*) = n$
 - Disproved by Tutte (1946): $\exists G^* : c(G^*) < n$
 - Grünbaum Walther (1973): $\exists G^* : c(G^*) = O(n^{0.9859})$.
 - Barnette (1966): $\forall G^* : c(G^*) = \Omega(\log n)$.
 - Bondy and Simonovits (1980): $\forall G^* : c(G^*) = e^{\Omega(\sqrt{\log n})}$
 - Jackson (1986): $\forall G^* : c(G^*) = \Omega(n^{0.6942})$
 - Billinski et al. (2011): $\forall G^{\star} : c(G^{\star}) = \Omega(n^{0.7532})$

- The longest cycle in G^* is called its *circumference*
- Circumference of *n*-vertex 3-connected cubic (planar) G^*
 - Tait's Conjecture (1884): $\forall G^* : c(G^*) = n$
 - Disproved by Tutte (1946): $\exists G^* : c(G^*) < n$
 - Grünbaum Walther (1973): $\exists G^* : c(G^*) = O(n^{0.9859})$.
 - Barnette (1966): $\forall G^* : c(G^*) = \Omega(\log n)$.
 - Bondy and Simonovits (1980): $\forall G^{\star}: c(G^{\star}) = e^{\Omega(\sqrt{\log n})}$
 - Jackson (1986): $\forall G^* : c(G^*) = \Omega(n^{0.6942})$
 - Billinski et al. (2011): $\forall G^* : c(G^*) = \Omega(n^{0.7532})$
 - Liu, Yu, Zhang (2019): $\forall G^* : c(G^*) = \Omega(n^{0.8})$

• Every dual cycle defines a proper good curve

- Every dual cycle defines a proper good curve
- But the curve contains no vertices!

- Every dual cycle defines a proper good curve
- But the curve contains no vertices!
- Can we "bend" the curve to pick up some vertices?

 w_{i+1}

- Every dual cycle defines a proper good curve
- But the curve contains no vertices!
- Can we "bend" the curve to pick up some vertices?
- Sometimes yes, sometimes no

- Every dual cycle defines a proper good curve
- But the curve contains no vertices!
- Can we "bend" the curve to pick up some vertices?
- Sometimes yes, sometimes no

- Every dual cycle defines a proper good curve
- But the curve contains no vertices!
- Can we "bend" the curve to pick up some vertices?
- Sometimes yes, sometimes no

- Every dual cycle defines a proper good curve
- But the curve contains no vertices!
- Can we "bend" the curve to pick up some vertices?
- Sometimes yes, sometimes no

- Every dual cycle defines a proper good curve
- But the curve contains no vertices!
- Can we "bend" the curve to pick up some vertices?
- Sometimes yes, sometimes no

- Every dual cycle defines a proper good curve
- But the curve contains no vertices!
- Can we "bend" the curve to pick up some vertices?
- Sometimes yes, sometimes no

A Bad Example

Theorem: If G^* has a cycle of lenth ℓ , then G^* has a cycle C' that caresses $\Omega(\ell/\Delta^4)$ faces.

Consequence: Every *n*-vertex planar graph of maximum degree Δ has a free set of size $\Omega(n^{0.8}/\Delta^4)$.

Open Problem: Eliminate the dependence on Δ .

Known vs Open

PlANAR Graph Uans	Size of propor	(I'm) CANLINGGH. Get
outerplanar		(9(n) 2004
series-paralel	SZ (n)	O(u) 2005
3-trees	szln)	9(n) 2016
cutaic 3-connected	52(h)	6(n)
bounded degre	$SZ\left(\frac{n}{\Delta^4}\right)$	0(n)
all plauar	S2 (n ^{1/2})	9(n. 1082322) = 9(n. 1098.)

- UNIVERSAL SUB (POINT) SET

Theorem (Da Lozzo, Dujmović, Frati, Mchedlidze, Roselli (2018))

S is a collinear set iff some proper good curve contains S.

Theorem (Da Lozzo, Dujmović, Frati, Mchedlidze, Roselli (2018))

S is a collinear set iff some proper good curve contains S.

Theorem (Da Lozzo, Dujmović, Frati, Mchedlidze, Roselli (2018))

S is a collinear set iff some proper good curve contains S.

Theorem (Da Lozzo, Dujmović, Frati, Mchedlidze, Roselli (2018))

S is a collinear set iff some proper good curve contains S.

Theorem (Da Lozzo, Dujmović, Frati, Mchedlidze, Roselli (2018))

S is a collinear set iff some proper good curve contains S.

Theorem (Da Lozzo, Dujmović, Frati, Mchedlidze, Roselli (2018))

S is a collinear set iff some proper good curve contains S.

Theorem (Da Lozzo, Dujmović, Frati, Mchedlidze, Roselli (2018))

S is a collinear set iff some proper good curve contains S.

Theorem (Da Lozzo, Dujmović, Frati, Mchedlidze, Roselli (2018))

S is a collinear set iff some proper good curve contains S.

Example

 $fix(G) \stackrel{\text{def}}{=} the maximum integer t s.t. G can be untangled while keeping t vertices fixed.$

previous work: cycles

Can every cycle be untangled while keeping $\varepsilon \mathbf{n}$ vertices fixed? [Watanabe 1998]

• \exists inf. many cycles **G** with $fix(G) \le c (n \log n)^{2/3}$.

[Pach and Tardos:2002, DCG]

planar graphs

open question:

Can planar graphs be untangled while keeping \mathbf{n}^{ϵ} vertices fixed? [Pach and Tardos:2002, DCG]

Theorem

For every geom planar graph G,

$$fix(G) \ge (n/3)^{1/4}$$

[D. & Bose, Hurtado, Langerman, Morin, Wood, 2007]

previous work: subclasses of planar graphs

graph class ${\cal G}$	lower bound	upper bound
cycles	$\Omega(n^{2/3})$ [Cibulka'08]	$\mathcal{O}(n \log n)^{2/3}$ [Pach&Tardos'08]
trees	$\sqrt{n/2}$? [Spillner & Wolff]
outerplanar	$\Omega(\sqrt{n})$ [Spillner & Wolff]	$\mathcal{O}(\sqrt{n})$ [Goaoc <i>et al.</i> '07]

previous work

for **G** planar

- $fix(G) \geq 3$
- $fix(G) \ge c \sqrt{\log n / \log \log n}$

[Goaoc et al, GD 2007]

[Spillner and Wolff, 2007]

Example

how to untangle a cycle?

ccw ordering: 1, 4, 2, 5, 3

fix: 1, 2, 5

By Erdős-Szekeres Theorem, #fix vertices of geom cycles is at least \sqrt{n} .

general planar graphs: (wrong) idea

assume triangulations

general planar graphs: (wrong) idea

assume triangulations

- **1** C $\stackrel{\text{def}}{=}$ largest induced cycle in **G**.
- 2 untangle C while keeping $|C|^{1/2}$ vertices fixed.

general planar graphs: (wrong) idea

assume triangulations

- **1** C $\stackrel{\text{def}}{=}$ largest induced cycle in **G**.
- 2 untangle **C** while keeping $|\mathbf{C}|^{1/2}$ vertices fixed.
- **3** move the rest of the vertices of **G**. inside of **C** in the untangling.

general planar graphs: (wrong) idea

assume triangulations

- **1** C $\stackrel{\text{def}}{=}$ largest induced cycle in **G**.
- 2 untangle C while keeping $|C|^{1/2}$ vertices fixed.
- 3 move the rest of the vertices of **G**. inside of **C** in the untangling.

if **C** is convex
$$\Longrightarrow$$
 fix(**G**) $\ge \sqrt{\log |\mathbf{C}|}$

two problems

- (a) |C| may be of constant size.
- (b) convexity of C in the untangling $\Longrightarrow log$ best possible

two problems

- (a) |C| may be of constant size.
- (b) convexity of \mathbf{C} in the untangling $\Longrightarrow \mathbf{log}$ best possible

fix for (b)

each face in the untangling of $\boldsymbol{\mathsf{H}}$ is star-shaped

two problems ...

(a) |C| may be of constant size.

two problems ...

(a) |C| may be of constant size.

(partial) fix for (a)

untangle a (more complex) induced subgraph H of G that guarantees |H| = f(n) for all planar graphs.

two problems ...

(a) |C| may be of constant size.

(partial) fix for (a)

untangle a (more complex) induced subgraph H of G that guarantees |H| = f(n) for all planar graphs.

Example:

 ${\sf H}$ an embedded outerplanar subgraph of ${\cal G}$.

By Moore's bound,
$$|\mathbf{H}| \ge |\log n/\log \log n| \Longrightarrow \operatorname{fix}(\mathbf{G}) \ge q\sqrt{\log n/\log \log n}$$

[Spillner and Wolff]

Frame

directed path in ${\mathcal F}$

H $\stackrel{\text{def}}{=}$ a subgraph of **G** induced by a directed path in \mathcal{F} .

 ${f H}$ is then an embedded outerplanar in ${f \mathcal G}$.

Lemma

A subgraph \mathbf{H} induced by a directed path in \mathcal{F} can be untangled while keeping $\mathbf{c}\sqrt{|\mathbf{H}|}$ vertices fixed.

two compatible subgraphs

chain in $<_{\mathcal{F}} \Rightarrow$ induces an embedded *outerplanar* subgraph \mathbf{H} in \mathcal{G} antichain in $<_{\mathcal{F}} \Rightarrow$??? subgraph.

putting it all together

By Dilworth's Theorem:

 $<_{\mathcal{F}}$ contains a chain of size \sqrt{n} , or an anti-chain of size \sqrt{n} .

geometric lemmas:

Lemma

A chain **H** in $<_{\mathcal{F}}$ can be untangled while keeping $\mathbf{c}\sqrt{|\mathbf{H}|}$ vertices fixed.

Lemma

An antichain \mathbf{H} can be untangled while keeping $\sqrt{|\mathbf{H}|}$ vertices fixed.

summary and open problems

graph class ${\cal G}$	lower bound	upper bound
planar	? [Pach&Tardos'02]	$\mathcal{O}(\sqrt{n})$ [Goaoc <i>et al.</i> '07]

summary and open problems

graph class ${\cal G}$	lower bound	upper bound
planar	$\Omega(n^{1/4})$	$\mathcal{O}(\sqrt{n})$ [Goaoc <i>et al.</i> '07]

 $\begin{cases} \textbf{open problem} \colon \mathsf{Close} \ \mathsf{the} \ \mathsf{gap} \ \mathsf{for} \ \mathsf{planar} \ \mathsf{graphs} ? \end{cases}$

graph class ${\cal G}$	lower bound	upper bound
cycles	$\Omega(n^{2/3})$ [Cibulka'08]	$\mathcal{O}(n \log n)^{2/3}$ [Pach&Tardos'02]
trees	$\sqrt{n/2}$? [Spillner & Wolff'07]
outerplanar	$\Omega(\sqrt{n})$ [Spillner & Wolff]	$\mathcal{O}(\sqrt{n})$ [Goaoc <i>et al.</i> '07]

Collinear Scts

Collinear Sots

trees-upper bound: $fix(T) = 3\sqrt{n} - 3$

Collinear Scts

Collinear Sots

trees-upper bound: $fix(T) = 3\sqrt{n} - 3$

WWY Collinear Scts?