MOTIVATION: Planar graphs

[John Traysseix, Pach, Pollack '90, Schmyder '89]

PLANAR GRAPHS HAVE $\Theta(n) \times \Theta(n)$ 2D GRID DRAWINGS

9(n²) volume

Q: [felsner, Listla, Wurmath '01]

Cau me do betler in 3D?

Q(n)

W

WHAT IS KNOWN ?

GRAPH FAMILY	YOLUME	REFERENCE
Kn, arbitrary	$\Theta(n^3)$	Eades, Cohen, Lin, Ruscey '96'
9(1) colourable	()(m²)	Pach, thiele, Toth 197
O(1) max degree	$0 (n^{3/2})$	D. & Wood '04
0 (1) outerplacear series paral	lel O(n) {	- Felsher, Liotta, Wismath '01 - Di Giacomo, Liotta, Wismath '02
O(1) treewidth		-D., Morim, Wood '05 - Wiechart 18
		- Niechart 18

E-TRACK LAYOUT

- $\{V_1, V_2, ..., V_t\}$ vertex colouring • total order $\{i \text{ of each } Vi \text{ (track)}\}$
- no X-crossing

set reix and yej w

why seace layouts?

Every graph 6 with the trace layout has a 3D guid drawing in O(ton) volume.

O(xon)

Back do track mumber of planar graphs

Orie Do planar graphs have 6(1) track num?

Soln) 3D grid grawing

Why?

plauar $G \subseteq H \boxtimes P$

- ► H is a graph of treewidth at most 8 - or known
- ightharpoonup Many problems are easy for \overline{H}
- \blacktriangleright Extending a solution from H to $H \boxtimes P$ is sometimes easy

O1:

Do planar graphs have 6(1) track num?

Soln) 3D grid grawing

structure of planar graphs

theorem [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '19] every planar graph G is a subgraph of $H \boxtimes P$ for some graph H with treewidth $\leqslant 8$ and some path P

F. Frank try obvious thing t == +RACK Layout H t == > fruck Layout H

t = + RACK layout H

+ HRACK Largout H

TRUCK Largout H

TRUCK Largout H HRUCK Layout H HRACK Layout H

= + RACK layout + what about these edges FRUCK layout H = HRACK Layout H 10 ho X-crossings (need do show) 2 - span $\leq 2t-1$

pon -> In

track layout: $2(V_{i}, <_{i}): 1 \le i \le t$?

with edge span s = b $ch(6) \le 2.8 + 1$.

Sarah Shedan

track number product

(x) fn $(H \boxtimes P) \leq 2 \cdot (a \cdot tn(H) - 1) + 1$ $\leq 4 \cdot tn(H) - 1$

Product structure => + 6 planar G=HMP +w(H)=8

=> In (H) & 6(4)

(A) => planar graphs have 6(1) +Rack

3D drawings of other graphs dasses (track munder) Q(1) track # => Q(n) 3D grid drawings

- What are good candidates?

- How many edges can a graph in O(n) volume?

- How many edges can a graph in O(n) volume?

HIDPOINT have?

graphy with O(n) edges:

- bounded genus - minor dosed

- K-plauar - bounded degree

graphy with O(n) edges:

- bounded genus - minor dosed

- K-plauar - bounded degree

graphy with 6(n) edges: - bounded genus

- minor dosed

- k-plauar

- bounded degree

which of these familles admit PNH product structure?

graphs with G(n) edges:

- bounded genus

- minor dosed

- k-plauar

- bounded degree

which of these familles admit POH product structure?

bounded degree

caudidate for:

O(1) track number?

6(n) 3D guid brawing?

bounded degree

caudidate for:

O(1) track number? HO courting)

6(n) 3D guid drawing?

BOUNDED DEGREE

6: Pach Thiele, Tóth, '99]

Does every bounded degree graph have O(n) volume 3D grid drawing? $-7 \text{ fm } \in \Omega(\sqrt{5}n^{\frac{1}{2}-\frac{1}{2}})$ or $\exists \text{ bounded degree expanders in the 64) to$

COUNTING

The Ebender & Confield '78, Warmald '78, McKay '85]

Num. of labelled Δ -regular graphs is $\geq \left(\frac{m}{3\Delta}\right)^{\Delta m/2}$

6: Given a 3D grid of volume H, how many crossing-free graphs does it admit?

 $> \theta(c^{N}) ?$

COUNTING Mia CROSSING LEMMA

[Ajlai, Chrátal, Nowborn, Szemerédi '82]

CROSSING LEMMA: # GRAPHS:

in 2D: $Q\left(\frac{m^3}{N^2}\right)$ $O(c^N)$

COUNTING Nia CROSSING LEMMA

[Ajlai, Chvátal, Newborn, Szemerédi '82]

CROSSING LEMMA:

in 2D:

 $\Omega\left(\frac{m^3}{H^2}\right)$

[D., Morin, Sheffer 13]

in 3D:

$$\mathcal{S}\left(\frac{m^2}{N}\log\frac{m}{N}\right)$$

in 4^tD:

$$\Omega\left(\frac{m^2}{N}\right)$$

C stight

GRAPHS:

 $O(c^{\prime\prime})$

?

$$\Omega(N^{H})$$

CANDIDATES: families metli PAH structure

- plauar

grapolis with O(n) edges: - bounded genus V - minor dosed - K-plauar V - bounded degree 2 contempre Rows home bounded tw thus O(ng+hz) edges Olhsthztus

CANDIDATES: families metli PAH structure

-plauar grapolis with 6(n) edges: - bounded genus \
- minor dosed?

2 contecut re rows - k-planar - bounded deoree HO

home bounded two
thus O(ny+uz) edges
O(ny+uz+uz)

PNH graphs have
O(ny+uz+uz)

PRODUCT STRUCTURE THEORY

- variations
- generalizations (other claster)
 other applications

Variations

The Product Structure Theorem for Planar Graphs

Theorem (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019):

For every planar graph G, there exists a planar graph H of treewidth at most $% A^{2}$ and a path P such that G is a subgraph of $H \boxtimes P$.

Leckerdt, Wood, Y, 2021]

Main theorem: Proof

Xv: [D., Joret, Miccx, Morin, Weekerdt, Wood] 2019

For every BFS spanning tree T of a planar graph G,

∃ a partition P into vertical paths s.t. tree width (G/3)≤8.

Proof: Partitioning Planar graphs

Key lemma. Suppose

- G⁺ plane triangulation
- Trooted spanning tree of G+ with root on outer-face
- ocycle C partitioned into vertical paths P_1, \dots, P_k with $k \leq 6$
- igcup G near-triangulation consisting of $m{\mathcal{C}}$ and everything inside.

Then G has a partition \mathcal{P} into vertical paths where $P_1, \ldots, P_k \in \mathcal{P}$ s.t. = G/\mathcal{P} has a tree-decomposition in which every bag has size at most 9 and some bag contains all vertices corresponding to P_1, \ldots, P_k .

Equivalence:

Second Version

Theorem (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019):

For every planar graph G there exists a planar graph H of treewidth at most 3 such that $G \subseteq H \boxtimes P \boxtimes K_3$.

Second Version

Theorem (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019):

For every planar graph G there exists a planar graph H of treewidth at most 3 such that $G \subseteq H \boxtimes P \boxtimes K_3$.

PRODUCT STRUCTURE THEORY

- variations
- generalizations (other claster)
- other applications

Similar* product structure theorems for

 graphs of bounded genus and apex-minor free graphs (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019);

GEHRIT if IPI = const and Iw (H) = const (6) = const.

Since H IIP4+ < has vert at distance 3+

Similar* product structure theorems for

 graphs of <u>bounded genus</u> and <u>apex-minor free</u> graphs (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019);

Similar* product structure theorems for

- graphs of bounded genus and apex-minor free graphs (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019);
- bounded degree graphs that exclude a fixed graph as a minor (Dujmović-Esperet-M-Walczak-Wood 2020);

Similar* product structure theorems for

- graphs of bounded genus and apex-minor free graphs (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019);
- bounded degree graphs that exclude a fixed graph as a minor (Dujmović-Esperet-M-Walczak-Wood 2020);
- ▶ k-planar graphs and (g, k)-planar graphs (Dujmović-M-Wood 2019).

Algorithmic Version

Theorem (M 2021): There exists an $O(n \log n)$ time algorithm that, given an n-vertex planar triangulation G finds H and P and the mapping $V(G) \to V(H \boxtimes P)$.

https://github.com/patmorin/lhp

Tree Decompositions

A tree decomposition of H are vertex sets (bags) B_1, B_2, \ldots such that

- \triangleright B_1, B_2, \ldots are the vertices of a tree
- $v \in V(H) \Rightarrow \{B_i \mid v \in B_i\}$ subtree
- $\triangleright uv \in E(H) \Rightarrow \exists i : u, v \in B_i$

The width is the maximum size of a bag -1.

Inductive Method 1 "add a leaf"

PRODUCT STRUCTURE THEORY

- variations
- generalizations (other clastet)
 other applications

tripod

union of up to three vertical paths whose lower endpoints form a clique in G

tripods with 3,2,1 legs

Let \triangleright G^+ planar triangulation, T BFS tree rooted at an outer vertex

 $hd T_1, T_2, T_3$ pairwise disjoint tripods

 $ightharpoonup F = [T_1, T_2, T_3]$ cycle

 \triangleright G near-triangulation on all vertices on and inside F

Then \triangleright there exists a partition \mathcal{T} of G into tripods with $T_1, T_2, T_3 \in \mathcal{T}$

ho $H=G/{\mathcal T}$ has tree-decomposition of width 3 with a bag containing T_1,T_2,T_3

T_1 T_2

union of up to three vertical paths whose lower endpoints form a clique in G

Let $\triangleright G^+$ planar triangulation, T BFS tree rooted at an outer vertex

 $hd T_1, T_2, T_3$ pairwise disjoint tripods

$$ho$$
 $F=[T_1,T_2,T_3]$ cycle

 \triangleright G near-triangulation on all vertices on and inside F

Then \triangleright there exists a partition \mathcal{T} of G into tripods with $T_1, T_2, T_3 \in \mathcal{T}$

ho $H=G/\mathcal{T}$ has tree-decomposition of width 3 with a bag containing T_1,T_2,T_3

tripod

union of up to three

tripods with 3,2,1 legs

Let \triangleright G^+ planar triangulation, T BFS tree rooted at an outer vertex

 $hd T_1, T_2, T_3$ pairwise disjoint tripods

$$ho$$
 $F=[T_1,T_2,T_3]$ cycle

 \triangleright G near-triangulation on all vertices on and inside F

Then \triangleright there exists a partition \mathcal{T} of G into tripods with $T_1, T_2, T_3 \in \mathcal{T}$

ho $H=G/\mathcal{T}$ has tree-decomposition of width 3 with a bag containing T_1,T_2,T_3

tripod

tripods with 3,2,1 legs

Let $\triangleright G^+$ planar triangulation, T BFS tree rooted at an outer vertex

 $hd T_1, T_2, T_3$ pairwise disjoint tripods

$$ho$$
 $F=[T_1,T_2,T_3]$ cycle

 \triangleright G near-triangulation on all vertices on and inside F

Then \triangleright there exists a partition \mathcal{T} of G into tripods with $T_1, T_2, T_3 \in \mathcal{T}$

 $hd H = G/\mathcal{T}$ has tree-decomposition of width 3 with a bag containing T_1, T_2, T_3

tripod
union of up to three
vertical paths whose
lower endpoints form

a clique in G

tripods with 3,2,1 legs

- \triangleright G is a planar triangulation
- \triangleright \mathcal{T} is a tripod partition
- $\triangleright \operatorname{tw}(H = G/\mathcal{T}) \le 3$

- \triangleright G is a planar triangulation
- \triangleright \mathcal{T} is a tripod partition
- $\triangleright \operatorname{tw}(\boldsymbol{H} = G/\mathcal{T}) \le 3$

- \triangleright G is a planar triangulation
- \triangleright \mathcal{T} is a tripod partition
- $\triangleright \operatorname{tw}(\boldsymbol{H} = G/\mathcal{T}) \le 3$

- \triangleright G is a planar triangulation
- \triangleright \mathcal{T} is a tripod partition
- $\triangleright \operatorname{tw}(\boldsymbol{H} = G/\mathcal{T}) \le 3$

- \triangleright G is a planar triangulation
- \triangleright \mathcal{T} is a tripod partition
- $\triangleright \operatorname{tw}(H = G/\mathcal{T}) \le 3$

- \triangleright G is a planar triangulation
- \triangleright \mathcal{T} is a tripod partition
- $\triangleright \operatorname{tw}(H = G/\mathcal{T}) \le 3$

- \triangleright G is a planar triangulation
- \triangleright \mathcal{T} is a tripod partition
- $\triangleright \operatorname{tw}(H = G/\mathcal{T}) \le 3$

$$H = G/\mathcal{T}$$

- \triangleright G is a planar triangulation
- \triangleright \mathcal{T} is a tripod partition

$$\triangleright \operatorname{tw}(\boldsymbol{H} = G/\mathcal{T}) \le 3$$

TRIPODS SUMHARY

 $H = G/\mathcal{T}$

- \triangleright G is a planar triangulation
- \triangleright \mathcal{T} is a tripod partition

$$\triangleright \operatorname{tw}(H = G/\mathcal{T}) \leq 3$$

Planar Product Structure Theorems [DJMMUW '19]

Any **planar** graph G is a subgraph of the product $H \boxtimes P \boxtimes K_3$ of K_3 , a path P, and a graph H a plause \mathcal{F}

Summary: vertical paths & tripods

$$H = G/\mathcal{T}$$

- \triangleright G is a planar triangulation
- \triangleright \mathcal{T} is a tripod partition
- $\triangleright \operatorname{tw}(\boldsymbol{H} = G/\mathcal{T}) \leq 3$
- > # is a plauar
 3-tucc

Planar Product Structure Theorems [DJMMUW '19]

Any **planar** graph G is a subgraph of the product $H \boxtimes P$ of a path P and a graph H of simple treewidth $\ref{eq:condition}$

Any **planar** graph G is a subgraph of the product $H \boxtimes P \boxtimes K_3$ of K_3 , a path P, and a graph H a plause \mathcal{F}

Summary: vertical patlus 2 tripods

 $H = G/\mathcal{T}$

- \triangleright G is a planar triangulation
- \triangleright \mathcal{T} is a tripod partition
- $\triangleright \operatorname{tw}(\boldsymbol{H} = G/\mathcal{T}) \leq 3$
- > # is a plauar
 3-trec

Planar Product Structure Theorems [DJMMUW '19, UWY '21+].

Any **planar** graph G is a subgraph of the product $H \boxtimes P$ of a path P and a graph H of simple treewidth

Any **planar** graph G is a subgraph of the product $H \boxtimes P \boxtimes K_3$ of K_3 , a path P, and a graph H a plause \mathcal{F}

Let $\triangleright G^+$ planar triangulation, T BFS tree rooted at an outer vertex

 $\triangleright P_1, \ldots, P_k$ pairwise disjoint vertical paths, $k \leq 6$

$$ho$$
 $F = [P_1, \ldots, P_k]$ cycle

 \triangleright G near-triangulation on all vertices on and inside F

ho $H=G/\mathcal{P}$ has tree-decomposition of width (k+3)-1 with a bag containing P_1,\ldots,P_k

Let $\triangleright G^+$ planar triangulation, T BFS tree rooted at an outer vertex

 $\triangleright P_1, \ldots, P_k$ pairwise disjoint vertical paths, $k \leq 6$

$$ho$$
 $F = [P_1, \ldots, P_k]$ cycle

 \triangleright G near-triangulation on all vertices on and inside F

ho $H=G/\mathcal{P}$ has tree-decomposition of width (k+3)-1 with a bag containing P_1,\ldots,P_k

Let $\triangleright G^+$ planar triangulation, T BFS tree rooted at an outer vertex

 $\triangleright P_1, \ldots, P_k$ pairwise disjoint vertical paths, $k \leq 6$

$$ho$$
 $F = [P_1, \ldots, P_k]$ cycle

 \triangleright G near-triangulation on all vertices on and inside F

ho $H=G/\mathcal{P}$ has tree-decomposition of width (k+3)-1 with a bag containing P_1,\ldots,P_k

Proof of the Main Lemma.

 \triangleright consider the parts of T in G

Let $\triangleright G^+$ planar triangulation, T BFS tree rooted at an outer vertex

 $\triangleright P_1, \ldots, P_k$ pairwise disjoint vertical paths, $k \leq 6$

$$ho$$
 $F = [P_1, \ldots, P_k]$ cycle

 \triangleright G near-triangulation on all vertices on and inside F

ho $H=G/\mathcal{P}$ has tree-decomposition of width (k+3)-1 with a bag containing P_1,\ldots,P_k

Proof of the Main Lemma.

- \triangleright consider the parts of T in G
- \triangleright exactly 3 groups of at most 2 paths each

Let $\triangleright G^+$ planar triangulation, T BFS tree rooted at an outer vertex

 $\triangleright P_1, \ldots, P_k$ pairwise disjoint vertical paths, $k \leq 6$

$$ho$$
 $F = [P_1, \dots, P_k]$ cycle

 \triangleright G near-triangulation on all vertices on and inside F

ho $H=G/\mathcal{P}$ has tree-decomposition of width (k+3)-1 with a bag containing P_1,\ldots,P_k

Proof of the Main Lemma.

- \triangleright consider the parts of T in G
- \triangleright exactly 3 groups of at most 2 paths each
- \triangleright 3-coloring of V(G) by going along T

Let $\triangleright G^+$ planar triangulation, T BFS tree rooted at an outer vertex

 $\triangleright P_1, \ldots, P_k$ pairwise disjoint vertical paths, $k \leq 6$

$$ho$$
 $F = [P_1, \dots, P_k]$ cycle

 \triangleright G near-triangulation on all vertices on and inside F

ho $H=G/\mathcal{P}$ has tree-decomposition of width (k+3)-1 with a bag containing P_1,\ldots,P_k

Proof of the Main Lemma.

- \triangleright consider the parts of T in G
- \triangleright exactly 3 groups of at most 2 paths each
- \triangleright 3-coloring of V(G) by going along T

Let $\triangleright G^+$ planar triangulation, T BFS tree rooted at an outer vertex

 $\triangleright P_1, \ldots, P_k$ pairwise disjoint vertical paths, $k \leq 6$

$$ho$$
 $F = [P_1, \ldots, P_k]$ cycle

 \triangleright G near-triangulation on all vertices on and inside F

ho $H=G/\mathcal{P}$ has tree-decomposition of width (k+3)-1 with a bag containing P_1,\ldots,P_k

Let $\triangleright G^+$ planar triangulation, T BFS tree rooted at an outer vertex

 $\triangleright P_1, \ldots, P_k$ pairwise disjoint vertical paths, $k \leq 6$

$$ho$$
 $F = [P_1, \ldots, P_k]$ cycle

 \triangleright G near-triangulation on all vertices on and inside F

ho $H=G/\mathcal{P}$ has tree-decomposition of width (k+3)-1 with a bag containing P_1,\ldots,P_k

- ho maintain P_1,\ldots,P_k pairwise disjoint vertical paths, $k\leq 5$
- \triangleright take a Sperner triangle with at most 3 paths on each side

Let $\triangleright G^+$ planar triangulation, T BFS tree rooted at an outer vertex

- $\triangleright P_1, \ldots, P_k$ pairwise disjoint vertical paths, $k \leq 5$
- ho $F = [P_1, \ldots, P_k]$ cycle
- \triangleright G near-triangulation on all vertices on and inside F

Then \triangleright there exists a partition \mathcal{P} of G into vertical paths with $P_1, \ldots, P_k \in \mathcal{P}$

ho $H=G/\mathcal{P}$ has tree-decomposition of width (k+3)-1 with a bag containing P_1,\ldots,P_k

Let $\triangleright G^+$ planar triangulation, T BFS tree rooted at an outer vertex

- $\triangleright P_1, \ldots, P_k$ pairwise disjoint vertical paths, $k \leq 5$
- ho $F = [P_1, \ldots, P_k]$ cycle
- \triangleright G near-triangulation on all vertices on and inside F

Then \triangleright there exists a partition \mathcal{P} of G into vertical paths with $P_1, \ldots, P_k \in \mathcal{P}$

ho $H=G/\mathcal{P}$ has tree-decomposition of width (k+3)-1 with a bag containing P_1,\ldots,P_k

- Let $\triangleright G^+$ planar triangulation, T BFS tree rooted at an outer vertex
 - $\triangleright P_1, \ldots, P_k$ pairwise disjoint vertical paths, $k \leq 5$
 - ho $F = [P_1, \ldots, P_k]$ cycle
 - \triangleright G near-triangulation on all vertices on and inside F
- Then \triangleright there exists a partition \mathcal{P} of G into vertical paths with $P_1, \ldots, P_k \in \mathcal{P}$
 - ho $H=G/\mathcal{P}$ has tree-decomposition of width (k+3)-1 with a bag containing P_1,\ldots,P_k

- Let $\triangleright G^+$ planar triangulation, T BFS tree rooted at an outer vertex
 - $\triangleright P_1, \ldots, P_k$ pairwise disjoint vertical paths, $k \leq 5$
 - ho $F = [P_1, \ldots, P_k]$ cycle
 - \triangleright G near-triangulation on all vertices on and inside F
- Then \triangleright there exists a partition \mathcal{P} of G into vertical paths with $P_1, \ldots, P_k \in \mathcal{P}$
 - ho $H=G/\mathcal{P}$ has tree-decomposition of width (k+3)-1 with a bag containing P_1,\ldots,P_k

- Let \triangleright G^+ planar triangulation, T BFS tree rooted at an outer vertex
 - $\triangleright P_1, \ldots, P_k$ pairwise disjoint vertical paths, $k \leq 5$
 - $ightharpoonup F = [P_1, \dots, P_k]$ cycle
 - \triangleright G near-triangulation on all vertices on and inside F
- Then \triangleright there exists a partition \mathcal{P} of G into vertical paths with $P_1, \ldots, P_k \in \mathcal{P}$
 - ho $H=G/\mathcal{P}$ has tree-decomposition of width (k+3)-1 with a bag containing P_1,\ldots,P_k

- Let \triangleright G^+ planar triangulation, T BFS tree rooted at an outer vertex
 - $\triangleright P_1, \ldots, P_k$ pairwise disjoint vertical paths, $k \leq 5$
 - ho $F = [P_1, \ldots, P_k]$ cycle
 - \triangleright G near-triangulation on all vertices on and inside F
- Then \triangleright there exists a partition \mathcal{P} of G into vertical paths with $P_1, \ldots, P_k \in \mathcal{P}$
 - ho $H=G/\mathcal{P}$ has tree-decomposition of width (k+3)-1 with a bag containing P_1,\ldots,P_k

Second Version

Theorem (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019):

For every planar graph G there exists a planar graph H of treewidth at most 3 such that $G \subseteq H \boxtimes P \boxtimes K_3$.

Second Version

Theorem (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019):

For every planar graph G there exists a planar graph H of treewidth at most 3 such that $G \subseteq H \boxtimes P \boxtimes K_3$.

Useful when the (simple) treewidth of H is important planar and treewidth-3 \iff simple treewidth 3

Algorithmic Version

Theorem (M 2021): There exists an $O(n \log n)$ time algorithm that, given an n-vertex planar triangulation G finds H and P and the mapping $V(G) \to V(H \boxtimes P)$.

https://github.com/patmorin/lhp

Similar* product structure theorems for

 graphs of bounded genus and apex-minor free graphs (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019);

Similar* product structure theorems for

- graphs of bounded genus and apex-minor free graphs (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019);
- bounded degree graphs that exclude a fixed graph as a minor (Dujmović-Esperet-M-Walczak-Wood 2020);

Similar* product structure theorems for

- graphs of bounded genus and apex-minor free graphs (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019);
- bounded degree graphs that exclude a fixed graph as a minor (Dujmović-Esperet-M-Walczak-Wood 2020);
- ▶ k-planar graphs and (g, k)-planar graphs (Dujmović-M-Wood 2019).

product structure

Algorithmic Version

Theorem (M 2021): There exists an $O(n \log n)$ time algorithm that, given an n-vertex planar triangulation G finds H and P and the mapping $V(G) \to V(H \boxtimes P)$.

https://github.com/patmorin/lhp

Similar* product structure theorems for

 graphs of bounded genus and apex-minor free graphs (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019);

Similar* product structure theorems for

- graphs of bounded genus and apex-minor free graphs (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019);
- bounded degree graphs that exclude a fixed graph as a minor (Dujmović-Esperet-M-Walczak-Wood 2020);

Endings

- P⊠H planar graphs 3 ≤ tw (H) ≤ 6
- · What other classes of graphs have product structure?
- · other applications