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Why?

G ✓ H ⇥ P

I H is a graph of treewidth at most 8

I Many problems are easy for H

I Extending a solution from H to H ⇥ P is sometimes easy
I Examples:

I queue number
I nonrepetitive colouring
I p-centered colouring
I `-vertex ranking
I adjacency labelling (universal graphs)
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th(G) =(k+1) 12 -1)"where K: =tr (G)



structure of planar graphs

theorem [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood ’19]
every planar graph G is a subgraph of H ⇥ P
for some graph H with treewidth 6 8 and some path P
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numberproduct
28 +1

*An (HiXP) = 20 (2.tn(H) -1)+1
=> 4An(H) - 1

Productstructure -> + Gplanar Gt*8
=Dtn (H) -> G(1)
*I planar graphs have 011) track
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&(1) track# =D G(m) 3D grid drawings
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- What are good candidates?
- How many edys call Old)-trackgraph

have?
I

-How many edges can a graph in o(n) volume ?
MIDPOINT have
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The Product Structure Theorem for Planar Graphs

Theorem (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019):
For every planar graph G , there exists a planar graph H of
treewidth at most 8 and a path P such that G is a subgraph of
H ⇥ P .
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Isimple treewidth 6
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For every BFS spanning tree T of a planar graph G
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Proof: Partitioning planar graphs

Key lemma. Suppose

I G+ plane triangulation

I T rooted spanning tree of G+ with root on outer-face

I cycle C partitioned into vertical paths P1, . . . ,Pk , with k 6 6

I G near-triangulation consisting of C and everything inside.

Then G has a partition P into vertical paths where P1, . . . ,Pk 2 P
s.t. = G/P has a tree-decomposition in which every bag has size
at most 9 and some bag contains all vertices corresponding to
P1, . . . ,Pk .

Baggett stetted
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proof idea

lemma [Dujmović, Joret, Micek, Morin, Ueckerdt, W. ’19]
for every BFS spanning tree T of a planar graph G , there is a vertex-
partition P into vertical paths in T such that treewidth(G/P) ! 8

a

b c d

e f g h i

j k l m n o

a

b c d

e f g h i

j k l m n o

G ⊆ (G/P)" P
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Second Version

Theorem (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019):
For every planar graph G there exists a planar graph H of
treewidth at most 3 such that G ✓ H ⇥ P ⇥ K3.

⇥ ⇥

Useful when the (simple) treewidth of H is important
planar and treewidth-3 () simple treewidth 3
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Theorem (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019):
For every planar graph G there exists a planar graph H of
treewidth at most 3 such that G ✓ H ⇥ P ⇥ K3.
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Useful when the (simple) treewidth of H is important
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Generalizations

Similar⇤ product structure theorems for

I graphs of bounded genus and apex-minor free graphs
(Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019);

I bounded degree graphs that exclude a fixed graph as a minor
(Dujmović-Esperet-M-Walczak-Wood 2020);

I k-planar graphs and (g , k)-planar graphs (Dujmović-M-Wood
2019).

⇤G ✓ H ⇥ P , only the treewidth of H changes

By David Eppstein - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=9852307

-

Hmino



↓

if IPI =const -> dw (67 - court
anddew (H) = const



GIHP

if IPI =const

anddew (H) = const

Aw (6): court
~*

H

Sinc HB 1 G = HBPs
has vertat· -distance 3t -

H I



Generalizations

Similar⇤ product structure theorems for

I graphs of bounded genus and apex-minor free graphs
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Algorithmic Version

Theorem (M 2021): There exists an O(n log n) time algorithm
that, given an n-vertex planar triangulation G finds H and P and
the mapping V (G ) ! V (H ⇥ P).

P1

P2

P3

e3

e1

e2

P1

P2

P3

⌧

Q3

Q1
Q2

x2 x1

x3

xF

e1

e03

e02

https://github.com/patmorin/lhp
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Tree Decompositions

A tree decomposition of H are

vertex sets (bags) B1, B2, . . .

such that

. uv 2 E(H) ) 9i : u, v 2 Bi

. B1, B2, . . . are the vertices of a tree

. v 2 V (H) ) {Bi | v 2 Bi} subtree

The width is the maximum size of a bag �1.

a4

a2

a1

a3

a5

a6

a7

H

B1

B2

B3

B4 B5

a2, a3, a5

a3, a5, a6

a1, a2, a3

a2, a4

a2, a7

Inductive Method 1

Inductive Method 2

“add a leaf”

X [ Y

Y [Z

“add a root”

X1 [ Y X2 [ Y

Y [Z
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Tripod Partition Lemma

Let . G
+
planar triangulation, T BFS tree rooted at an outer vertex

.

. F = [T1, T2, T3] cycle

. G near-triangulation on all vertices on and inside F

Then . there exists a partition T of G into tripods with T1, T2, T3 2 T
.

T1, T2, T3 pairwise disjoint tripods

H = G/T has tree-decomposition of width 3 with a bag containing T1, T2, T3

tripod
union of up to three

vertical paths whose

lower endpoints form

a clique in G

tripods with 3,2,1 legs
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Tripod Partition Lemma

Let . G
+
planar triangulation, T BFS tree rooted at an outer vertex

.

. F = [T1, T2, T3] cycle

. G near-triangulation on all vertices on and inside F
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lower endpoints form
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T2

T3

T1

T4

G2

T1

T2

T3

T2

G1

G3

T1

T3
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. T is a tripod partition

. G is a planar triangulation

tw(H = G/T )  3.
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G H = G/T

H is a simple 3-tree.

. T is a tripod partition

. G is a planar triangulation

tw(H = G/T )  3.

every K3 separates H into

at most 2 components

It is a planar

IBBEA.az



Summary and Thank You

G H = G/T

H is a simple 3-tree.

. T is a tripod partition

. G is a planar triangulation

tw(H = G/T )  3.

Any planar graph G is a subgraph of

the product H ⇥ P of a path P

and a graph H of simple treewidth 6.

Planar Product Structure Theorems [DJMMUW ’19, UWY ’21+].

Any planar graph G is a subgraph of

the product H ⇥ P ⇥K3 of K3, a path P ,

and a graph H of simple treewidth 3.

every K3 separates H into

at most 2 components
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Summary and Thank You

G H = G/T

H is a simple 3-tree.

. T is a tripod partition

. G is a planar triangulation
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Planar Product Structure Theorems [DJMMUW ’19, UWY ’21+].

Any planar graph G is a subgraph of

the product H ⇥ P ⇥K3 of K3, a path P ,

and a graph H of simple treewidth 3.

every K3 separates H into

at most 2 components
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Summary and Thank You

G H = G/T

H is a simple 3-tree.

. T is a tripod partition

. G is a planar triangulation

tw(H = G/T )  3.

Any planar graph G is a subgraph of

the product H ⇥ P of a path P

and a graph H of simple treewidth 6.

Planar Product Structure Theorems [DJMMUW ’19, UWY ’21+].

Any planar graph G is a subgraph of

the product H ⇥ P ⇥K3 of K3, a path P ,

and a graph H of simple treewidth 3.

every K3 separates H into

at most 2 components
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The Main Lemma

Let . G
+
planar triangulation, T BFS tree rooted at an outer vertex

. P1, . . . , Pk pairwise disjoint vertical paths, k  6

. F = [P1, . . . , Pk] cycle

. G near-triangulation on all vertices on and inside F

Then . there exists a partition P of G into vertical paths with P1, . . . , Pk 2 P
. H = G/P has tree-decomposition of width (k + 3)� 1 with a bag containing P1, . . . , Pk

root



The Main Lemma

Let . G
+
planar triangulation, T BFS tree rooted at an outer vertex

. P1, . . . , Pk pairwise disjoint vertical paths, k  6

. F = [P1, . . . , Pk] cycle

. G near-triangulation on all vertices on and inside F

Then . there exists a partition P of G into vertical paths with P1, . . . , Pk 2 P
. H = G/P has tree-decomposition of width (k + 3)� 1 with a bag containing P1, . . . , Pk

P1

P2 P3

P4

P5

P6

root



The Main Lemma

Let . G
+
planar triangulation, T BFS tree rooted at an outer vertex

. P1, . . . , Pk pairwise disjoint vertical paths, k  6

. F = [P1, . . . , Pk] cycle

. G near-triangulation on all vertices on and inside F

Then . there exists a partition P of G into vertical paths with P1, . . . , Pk 2 P
. H = G/P has tree-decomposition of width (k + 3)� 1 with a bag containing P1, . . . , Pk

P1

P2 P3

P4

P5

P6

root

Proof of the Main Lemma.

. consider the parts of T in G



The Main Lemma

Let . G
+
planar triangulation, T BFS tree rooted at an outer vertex

. P1, . . . , Pk pairwise disjoint vertical paths, k  6

. F = [P1, . . . , Pk] cycle

. G near-triangulation on all vertices on and inside F

Then . there exists a partition P of G into vertical paths with P1, . . . , Pk 2 P
. H = G/P has tree-decomposition of width (k + 3)� 1 with a bag containing P1, . . . , Pk

P1

P2 P3

P4

P5

P6

root

Proof of the Main Lemma.

. consider the parts of T in G

. exactly 3 groups of at most 2 paths each



The Main Lemma

Let . G
+
planar triangulation, T BFS tree rooted at an outer vertex

. P1, . . . , Pk pairwise disjoint vertical paths, k  6

. F = [P1, . . . , Pk] cycle

. G near-triangulation on all vertices on and inside F

Then . there exists a partition P of G into vertical paths with P1, . . . , Pk 2 P
. H = G/P has tree-decomposition of width (k + 3)� 1 with a bag containing P1, . . . , Pk

P1

P2 P3

P4

P5

P6

root

Proof of the Main Lemma.

. consider the parts of T in G

. exactly 3 groups of at most 2 paths each

. 3-coloring of V (G) by going along T



The Main Lemma

Let . G
+
planar triangulation, T BFS tree rooted at an outer vertex

. P1, . . . , Pk pairwise disjoint vertical paths, k  6
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P2 P3
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P5

P6

root

Proof of the Main Lemma.

. consider the parts of T in G

. exactly 3 groups of at most 2 paths each

. 3-coloring of V (G) by going along T

. 3-colored inner face by Sperner’s Lemma
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Improvement to k  5 paths

P2

P3

P4

P5

P1

. maintain P1, . . . , Pk pairwise disjoint vertical paths, k  5

P2

P1

P3

P4

P5

P1

P4

P5

P2

P3
4

5
5

. take a Sperner triangle with at most 3 paths on each side
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Second Version

Theorem (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019):
For every planar graph G there exists a planar graph H of
treewidth at most 3 such that G ✓ H ⇥ P ⇥ K3.

⇥ ⇥

Useful when the (simple) treewidth of H is important
planar and treewidth-3 () simple treewidth 3
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Algorithmic Version

Theorem (M 2021): There exists an O(n log n) time algorithm
that, given an n-vertex planar triangulation G finds H and P and
the mapping V (G ) ! V (H ⇥ P).
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Generalizations

Similar⇤ product structure theorems for

I graphs of bounded genus and apex-minor free graphs
(Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019);

I bounded degree graphs that exclude a fixed graph as a minor
(Dujmović-Esperet-M-Walczak-Wood 2020);

I k-planar graphs and (g , k)-planar graphs (Dujmović-M-Wood
2019).

⇤G ✓ H ⇥ P , only the treewidth of H changes

By David Eppstein - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=9852307
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(Dujmović-Esperet-M-Walczak-Wood 2020);

I k-planar graphs and (g , k)-planar graphs (Dujmović-M-Wood
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(Dujmović-Esperet-M-Walczak-Wood 2020);

I k-planar graphs and (g , k)-planar graphs (Dujmović-M-Wood
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•• P☒ H planar graphs 3⇐ too (1-1)<-6

• what other classes of graphs have product
structure?

• other applications


