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Ranking Graph Classes by Complexity

Simple

I paths (forests of paths)

I trees (forests)

I k-Trees (graphs of treewidth at most k)

I ...

I planar graphs

I ...

I proper-minor closed families

I ...

I bounded expansion

I ...

I all graphs

Complicated
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The Product Structure Theorem for Planar Graphs

Theorem (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019):
For every planar graph G , there exists a planar graph H of
treewidth at most 8 and a path P such that G is a subgraph of
H ⇥ P .
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The Strong Graph Product ⇥

For two graphs A and B , the strong product A⇥B is a graph:

I V (A⇥ B) := V (A)⇥ V (B)
I (a1, b1) and (a2, b2) are adjacent if and only if:

I a1 = a2 and b1b2 2 E(B);
I a1a2 2 E(A) and b1 = b2; or
I a1a2 2 E(A) and b1b2 2 E(B).
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Treewidth

A tree-decomposition of a graph G represents each vertex as a
subtree of a tree T so that the subtrees of adjacent vertices
intersect in T

width := maximum bag size � 1

treewidth := min width of tree-decomposition
of G

[Images courtesy of Wikipedia]
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a tree decomposition represents each vertex as a subtree of a tree T
so that the subtrees of adjacent vertices intersect in T

tree-width := maximum bag size -1

tree-breadth := minimum `
such that for some layering
each bag has  ` vertices in each layer

lemma:
tree-breadth ` ) breadth ` separators
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The Product Structure Theorem for Planar Graphs

Theorem (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019):
For every planar graph G , there exists a planar graph H of
treewidth at most 8 and a path P such that G is a subgraph of
H ⇥ P .
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Tree Decompositions

A tree decomposition of H are

vertex sets (bags) B1, B2, . . .

such that

. uv 2 E(H) ) 9i : u, v 2 Bi

. B1, B2, . . . are the vertices of a tree

. v 2 V (H) ) {Bi | v 2 Bi} subtree

The width is the maximum size of a bag �1.

a4

a2

a1

a3

a5

a6

a7

H

B1

B2

B3

B4 B5

a2, a3, a5

a3, a5, a6

a1, a2, a3

a2, a4

a2, a7

Inductive Method 1

Inductive Method 2

“add a leaf”

X [ Y

Y [Z

“add a root”

X1 [ Y X2 [ Y

Y [Z



The Precursor

Theorem (Siebertz-Pilipczuk 2018): For any planar
triangulation G , there exists a partition P of V (G ) such that

I Each part of P induces a geodesic (shortest path) in G ; and

I The quotient graph H := G/P has treewidth at most 8
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Layered H-Partitions

Theorem (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019):
For any planar triangulation G and any breadth-first spanning-tree
T of G , there exists a partition P of V (G ) such that

I Each part of P induces a vertical path in T

I The quotient graph H := G/P has treewidth at most 8
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Theorem (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019):
For any planar triangulation G and any breadth-first spanning-tree
T of G , there exists a partition P of V (G ) such that

I Each part of P induces a vertical path in T

I The quotient graph H := G/P has treewidth at most 8



proof idea

lemma [Dujmović, Joret, Micek, Morin, Ueckerdt, W. ’19]
for every BFS spanning tree T of a planar graph G , there is a vertex-
partition P into vertical paths in T such that treewidth(G/P) ! 8
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Equivalence

Layered H-partition theorem and product structure theorem are
equivalent:

G
H ⇥ P
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Equivalence

Layered H-partition theorem and product structure theorem are
equivalent:

G
H ⇥ P
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Heated.



Layered H-Partitions

Theorem (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019):
For any planar triangulation G and any breadth-first spanning-tree
T of G , there exists a partition P of V (G ) such that

I Each part of P induces a vertical path in T

I The quotient graph H := G/P has treewidth at most 8



Proof: Partitioning planar graphs

Key lemma. Suppose

I G+ plane triangulation

I T rooted spanning tree of G+ with root on outer-face

I cycle C partitioned into vertical paths P1, . . . ,Pk , with k 6 6

I G near-triangulation consisting of C and everything inside.

Then G has a partition P into vertical paths where P1, . . . ,Pk 2 P
s.t. = G/P has a tree-decomposition in which every bag has size
at most 9 and some bag contains all vertices corresponding to
P1, . . . ,Pk .
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Tree Decompositions

A tree decomposition of H are

vertex sets (bags) B1, B2, . . .

such that

. uv 2 E(H) ) 9i : u, v 2 Bi

. B1, B2, . . . are the vertices of a tree

. v 2 V (H) ) {Bi | v 2 Bi} subtree

The width is the maximum size of a bag �1.
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