Graph Product Structure Theory

 $G\subseteq H\boxtimes P$

Vida Dujmović University of Ottawa

Soulist of airly services for the services of the services of

Ranking Graph Classes by Complexity

Simple

- paths (forests of paths)
- trees (forests)
- ▶ k-Trees (graphs of treewidth at most k)
- planar graphs
- proper-minor closed families
- bounded expansion
- ▶ all graphs

Complicated

structure of planar graphs

The Product Structure Theorem for Planar Graphs

Theorem (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019):

For every planar graph G, there exists a planar graph H of treewidth at most \mathcal{S} and a path P such that G is a subgraph of $H \boxtimes P$.

Leckerdt, Wood, Y, 2021]

4ロト 4個ト 4 国ト 4 国ト ■ 990

The Strong Graph Product ⊠

For two graphs A and B, the strong product $A \boxtimes B$ is a graph:

- $V(A \boxtimes B) := V(A) \times V(B)$
- \triangleright (a_1, b_1) and (a_2, b_2) are adjacent if and only if:
 - ▶ $a_1 = a_2$ and $b_1 b_2 \in E(B)$;
 - ▶ $a_1a_2 \in E(A)$ and $b_1 = b_2$; or
 - ▶ $a_1a_2 \in E(A)$ and $b_1b_2 \in E(B)$.

A tree-decomposition of a graph G represents each vertex as a subtree of a tree T so that the subtrees of adjacent vertices intersect in T

[Images courtesy of Wikipedia]

A tree-decomposition of a graph G represents each vertex as a subtree of a tree T so that the subtrees of adjacent vertices intersect in T

width := maximum bag size -1

tree-decomposition of 6

[Images courtesy of Wikipedia]

A tree-decomposition of a graph G represents each vertex as a subtree of a tree T so that the subtrees of adjacent vertices intersect in T

A tree-decomposition of a graph G represents each vertex as a subtree of a tree T so that the subtrees of adjacent vertices intersect in T

[Images courtesy of Wikipedia]

A tree-decomposition of a graph G represents each vertex as a subtree of a tree T so that the subtrees of adjacent vertices intersect in T

width := maximum bag size -1

treewidth := min width of tree-decomposition of G

How would you build a tree-decomp.
of this tree?

How do build the decomp

or this outerplanar graph ?

trees

BET EC

G

outerplanar graphs

Difficultions of

polygons

Is outerplacear graphs have treewidthe 2.

grids

grids

width $G(\overline{n}) \leftarrow \widehat{0}$ the Treewidth of grids is $G(\overline{n})$

CLASSICAL, SEPARATORS

Soldanced $\Delta \in [\frac{1}{2}, 1)$

$$S \subseteq V(6)$$

s.t every connected
component of $G-S$
has $\leq \frac{1}{2}|V(6)|$ vertices.

|5| := size of separator

MANY APPLICATIONS

grophs with small separators

Lo parametrized (exact) algorithms

approximation algorithms

(divide and conquer)

graphs with no small separators

- $kn \geq \frac{n}{2}$
- expanders
 (sparce graphs with high 'global' connectionity

Where are the reparators?

where are the separators?

Roberton and Seymour:

blanced separators

< +w + 1

Co for weighted graphs too

Drorak and Norin:

Revense is true.

 $4w(6) \leq 105 \operatorname{sep}(6)$

=> Troewidth and separ. tied

Example: TREES

the Every tree has a separator of size 1.

Example: OUTERPLANAR

· outerplanar graph

The Every trace has a separator of size the

Example: OTHER

· outerplanar graph

The Every trace has a separator of size X.

·> · series-parallel

Q: Do all planar graphs have constant size separators?

Example: OTHER

· outerplanar graph

The Every trace has a separator of size the

series-parallel

Q: Do all planar graphs have constant size separators?

What about plauar graphs?

Lipton & Tarjan 80s: Planar graphs have O (Vn) separators.

Depended genus De proper niner desed

Used extensively:

- PTAS alg (1-E)

- EPTAS

_ bidimensionality

t does not help us though
e.g monrapohitine colourings,
gneue layouss.

The Product Structure Theorem for Planar Graphs

Theorem (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019):

For every planar graph G, there exists a planar graph H of treewidth at most $% A^{2}$ and a path P such that G is a subgraph of $H \boxtimes P$.

Leckerdt, Wood, Y, 2021]

Tree Decompositions

A tree decomposition of H are vertex sets (bags) B_1, B_2, \ldots such that

- \triangleright B_1, B_2, \ldots are the vertices of a tree
- $v \in V(H) \Rightarrow \{B_i \mid v \in B_i\}$ subtree
- $\triangleright uv \in E(H) \Rightarrow \exists i : u, v \in B_i$

The width is the maximum size of a bag -1.

Inductive Method 1 "add a leaf"

The Precursor

Theorem (Siebertz-Pilipczuk 2018): For any planar triangulation G, there exists a partition \mathcal{P} of V(G) such that

The Precursor

Theorem (Siebertz-Pilipczuk 2018): For any planar triangulation G, there exists a partition \mathcal{P} of V(G) such that

► Each part of *P* induces a *geodesic* (shortest path) in *G*; and

The Precursor

Theorem (Siebertz-Pilipczuk 2018): For any planar triangulation G, there exists a partition \mathcal{P} of V(G) such that

- Each part of P induces a *geodesic* (shortest path) in G; and
- ▶ The quotient graph $H := G/\mathcal{P}$ has treewidth at most 8

Theorem (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019): For any planar triangulation G and any breadth-first spanning-tree T of G, there exists a partition \mathcal{P} of V(G) such that

Theorem (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019): For any planar triangulation G and any breadth-first spanning-tree T of G, there exists a partition \mathcal{P} of V(G) such that

► Each part of *P* induces a *vertical path* in *T*

Theorem (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019):

For any planar triangulation G and any breadth-first spanning-tree T of G, there exists a partition \mathcal{P} of V(G) such that

- ► Each part of *P* induces a *vertical path* in *T*
- ▶ The quotient graph $H := G/\mathcal{P}$ has treewidth at most 8

Equivalence:

Equivalence

Werhical H-partition theorem and product structure theorem are equivalent:

Equivalence

Westical H-partition theorem and product structure theorem are equivalent:

Theorem (Dujmović-Joret-Micek-M-Ueckerdt-Wood 2019):

For any planar triangulation G and any breadth-first spanning-tree T of G, there exists a partition \mathcal{P} of V(G) such that

- ► Each part of *P* induces a *vertical path* in *T*
- ▶ The quotient graph $H := G/\mathcal{P}$ has treewidth at most 8

Proof: Partitioning Planar graphs

Key lemma. Suppose

- G⁺ plane triangulation
- T rooted spanning tree of with root on outer-face
- ocycle \subset partitioned into vertical paths P_1, \dots, P_k , with $k \leq 6$
- igcup G near-triangulation consisting of $m{\mathcal{C}}$ and everything inside.

Then G has a partition \mathcal{P} into vertical paths where $P_1, \ldots, P_k \in \mathcal{P}$ s.t. = G/\mathcal{P} has a tree-decomposition in which every bag has size at most 9 and some bag contains all vertices corresponding to P_1, \ldots, P_k .

Sperner Lemma

Tree Decompositions

A tree decomposition of H are vertex sets (bags) B_1, B_2, \ldots such that

- \triangleright B_1, B_2, \ldots are the vertices of a tree
- $v \in V(H) \Rightarrow \{B_i \mid v \in B_i\}$ subtree
- $\triangleright uv \in E(H) \Rightarrow \exists i : u, v \in B_i$

The width is the maximum size of a bag -1.

Inductive Method 1 "add a leaf"

