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2-D and 3-D Straight-Line Grid Drawings

e vertices — grid-points in Z? (Z?)

e cdges — straight line segments

e NO edge crossings




2-D and 3-D Straight-Line Grid Drawings

Main aesthetic criterion:
e 2-D: small area

e 3-D: small volume (of bounding box)

Measuring the volume of a box:

3 X 3 X 3 box with volume 27
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Ranking Graph Classes by Complexity

Simple
» paths (forests of paths)
trees (forests)

>
» k-Trees (graphs of treewidth at most k)
>

» planar graphs

>

» proper-minor closed families

>
» bounded expansion

>

> all graphs
Complicated
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Ranking Graph Classes by Complexity

Simple
» paths (forests of paths)
trees (forests)

>
» k-Trees (graphs of treewidth at most k)
>

» planar graphs

>

» proper-minor closed families

| 4
» bounded expansion
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minor-closed classes

minor-closed graph classes
graphs of bounded genus

planar graphs




graph minor structure theorem

minor-closed graph classes

graph mino
structure
theorem graphs of bounded genus

planar graphs

trees

0



structure of planar graphs

minor-closed graph classes

graph mino
structure
theorem graphs of bounded genus

planar graphs

trees

0

77



product structure

minor-closed graph classes

graph minor
structure
theorem graphs of bounded genus

planar graphs

product
structure

graphs of bounded treewidth




Informally

> Can we a planar graph into simpler graphs?




structure of planar graphs

theorem
every planar graph G is a subgraph of HX P
for some graph H with treewidth < 8 and some path P
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structure of planar graphs

theorem
every planar graph G is a subgraph of HX P
for some graph H with treewidth < 8 and some path P

m\ <

N




strong product

For two graphs A and B, the strong product AX B is a graph:
o V(AR B) := V(A) x V(B)
e (a1, b1) and (a2, bp) are adjacent if and only if:
@ a; = ap and b1 b, € E(B);
@ ajap € E(A) and by = by; or
@ ajar € E(A) and b1 b, € E(B)

m\ﬁz
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The Strong Graph Product X

For two graphs A and B, the AN B is a graph:

> V(AX B) := V(A) x V(B)
» (a1, b1) and (az, by) are adjacent if and only if:

(9] Q
> a1 = a and bib, € E(B); o
> a1ax € E(A) and by = by; or b,
> aja; € E(A) and bib, € E(B).
bﬁl
_ N

m\ <




The Strong Graph Product X

For two graphs A and B, the AN B is a graph:

> V(AX B) := V(A) x V(B)
» (a1, b1) and (az, by) are adjacent if and only if: &

Q,
> a2, =a and bib, € E(B); o«

> a3 € E(A) and by = by; or by
> aja; € E(A) and bib, € E(B).
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The Strong Graph Product X

For two graphs A and B, the AN B is a graph:
> V(AX B) .= V(A) x V(B)
» (a1, b1) and (az, by) are adjacent if and only if: ‘1.1/——\‘.%
» a; = a, and b1b, € E(B); b,
> aja; € E(A) and by = by; or
> aia, € E(A) and bib, € E(B). bAC

m\ <




cartesian, direct, strong product

e
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Fig. 4: Examples of graph products: (a) cartesian, (b) direct, (c) strong.



structure of planar graphs

theorem
every planar graph G is a subgraph of HX P
for some graph H with treewidth < 8 and some path P

m\ <

C

what is it good for?




Why?

GCHKXP
> H is a graph of treewidth at most 8

?
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GCHKXP
> H is a graph of treewidth at most 8
» Many problems are easy for H

» Extending a solution from H to HX P is sometimes easy
> Examples:
> queue number | 3b 3?.(:;1 cjﬂav\h'vu?S
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