
Graph Product Structure Theory

G ✓ H ⇥ P

43 ACC 2021

Vida Dujmović
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2-D and 3-D Straight-Line Grid Drawings

• vertices −→ grid-points in Z2 (Z3)

• edges −→ straight line segments

• no edge crossings

2-D 3-D



2-D and 3-D Straight-Line Grid Drawings

Main aesthetic criterion:

• 2-D: small area

• 3-D: small volume (of bounding box)

Measuring the volume of a box:

3 × 3 × 3 box with volume 27
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Ranking Graph Classes by Complexity

Simple

I paths (forests of paths)

I trees (forests)

I k-Trees (graphs of treewidth at most k)

I ...

I planar graphs

I ...

I proper-minor closed families

I ...

I bounded expansion

I ...

I all graphs

Complicated
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minor-closed classes

minor-closed graph classes

graphs of bounded genus

planar graphs

trees



graph minor structure theorem

minor-closed graph classes

graphs of bounded genus

planar graphs

graph minor
structure
theorem

trees



structure of planar graphs

minor-closed graph classes

graphs of bounded genus

planar graphs

graph minor
structure
theorem

???

trees



product structure

minor-closed graph classes

graphs of bounded genus

planar graphs

graphs of bounded treewidth

graph minor
structure
theorem

product
structure

trees



Informally

I Can we factor a planar graph into simpler graphs?

I Yes! Every planar graph is contained in the strong product of
a graph H of treewidth at most 8 and a path P
(G ✓ H ⇥ P)



structure of planar graphs

theorem [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood ’19]
every planar graph G is a subgraph of H ⇥ P
for some graph H with treewidth 6 8 and some path P

✓



structure of planar graphs

theorem [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood ’19]
every planar graph G is a subgraph of H ⇥ P
for some graph H with treewidth 6 8 and some path P
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strong product

For two graphs A and B , the strong product A⇥ B is a graph:
V (A⇥ B) := V (A)⇥ V (B)
(a1, b1) and (a2, b2) are adjacent if and only if:

a1 = a2 and b1b2 2 E (B);
a1a2 2 E (A) and b1 = b2; or
a1a2 2 E (A) and b1b2 2 E (B).

⇥ =



The Strong Graph Product ⇥

For two graphs A and B , the strong product A⇥B is a graph:
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The Strong Graph Product ⇥

For two graphs A and B , the strong product A⇥B is a graph:
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The Strong Graph Product ⇥

For two graphs A and B , the strong product A⇥B is a graph:

I V (A⇥ B) := V (A)⇥ V (B)
I (a1, b1) and (a2, b2) are adjacent if and only if:

I a1 = a2 and b1b2 2 E(B);
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cartesian, direct, strong product



structure of planar graphs

theorem [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood ’19]
every planar graph G is a subgraph of H ⇥ P
for some graph H with treewidth 6 8 and some path P

✓
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what is it good for?



Why?

G ✓ H ⇥ P

I H is a graph of treewidth at most 8

I Many problems are easy for H

I Extending a solution from H to H ⇥ P is sometimes easy
I Examples:

I queue number
I nonrepetitive colouring
I p-centered colouring
I `-vertex ranking
I adjacency labelling (universal graphs)
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Why?

G ✓ H ⇥ P

I H is a graph of treewidth at most 8

I Many problems are easy for H

I Extending a solution from H to H ⇥ P is sometimes easy
I Examples:

I queue number
I nonrepetitive colouring
I p-centered colouring
I `-vertex ranking
I adjacency labelling (universal graphs)

✓ ⇥
teniger



Back to track
number

ofplanar graphs


