Part 1: Product Structure Theory

 $G \subseteq H \boxtimes P$

Vida Dujmović University of Ottawa Problem 1

* start ria old slides

How to draw a graph (nicely)?

- · colges are straight-line seyments
- · few color crossings
- · few bends per edge
- · small area/volume
- · symmetry
- · resolution

2-D and 3-D Straight-Line Grid Drawings

- ullet vertices \longrightarrow grid-points in \mathbb{Z}^2 (\mathbb{Z}^3)
- edges → straight line segments
- no edge crossings

2-D and 3-D Straight-Line Grid Drawings

Main aesthetic criterion:

• 2-D: small area

• 3-D: small volume (of bounding box)

Measuring the volume of a box:

 $3 \times 3 \times 3$ box with volume 27

MOTIVATION: Plauar graphs

[de Fraysseix, Pach, Pollack '90, Schnyder '89]

PLANAR GRAPHS HAVE $\Theta(n) \times \Theta(n) 2D$ GRID DRAWINGS

O(n2) volume

MOTIVATION: Planar graphs

[John Traysseix, Pach, Pollack '90, Schmyder '89]

PLANAR GRAPHS HAVE $\Theta(n) \times \Theta(n)$ 2D GRID DRAWINGS

9(n²) volume

Q: [felsner, Listla, Wurmath '01]

Cau me do betler in 3D?

Q(n)

Place vertex
$$i$$
 at (i, i^2, i^3) .

{ eolges i_1i_2 and i_3i_4 cross, then i_1, i_2, i_3, i_4 are coplanor

$$\det \begin{pmatrix} i & i_1 & i_2 & i_3 \\ i & i_2 & i_3 & i_3 \end{pmatrix} = \prod (i_2 - i_3) = \emptyset$$
| $i_4 i_4 i_4 i_4 i_4 i_4 \end{pmatrix} = \lim_{1 \le L < \beta \le 4} (i_4 - i_5) = \emptyset$

Proof:

Place vertex i al
$$(i, i^2, i^3)$$
.

If ealges i, i_2 and i_3 i_4 cross, then i_1, i_2, i_3, i_4 are coplanar

Notice that (i, i^2, i^3) are co

Place vertex
$$i$$
 at (i, i^2, i^3) .

If edges i, i_2 and $i_3 i_4$ cross, then i_1, i_2, i_3, i_4 are coplanar value of (i, i^2, i^3) and (i, i^2, i^3) and (i, i^2, i^3) are (i, i^2, i^3) and (i, i^2, i^3) .

When (i, i^2, i^3) are (i, i^2, i^3) are (i, i^2, i^3) and (i, i^2, i^3) .

When (i, i^2, i^3) are (i, i^2, i^3) are (i, i^2, i^3) are (i, i^2, i^3) .

- vertex i at (i, i² mod p, i³ mod p) ⇒ $O(n^3)$ volume Eades, Cohen, Lin, Ruscey °96
- Erdős discovered this trick in 2D in 1951

W

WHAT IS KNOWN ?

GRAPH FAMILY	YOLUME	REFERENCE
Kn, arbitrary	$\Theta(n^3)$	Eades, Cohen, Lin, Ruscey '96'
9(1) colourable	()(m²)	Pach, thiele, Toth 197
O(1) max degree	$0 (n^{3/2})$	D. & Wood '04
0 (1) outerplacear series paral	lel O(n) {	- Felsher, Liotta, Wismath '01 - Di Giacomo, Liotta, Wismath '02
O(1) treewidth		-D., Morim, Wood '05 - Wiechart 18
		- Niechart 18

OPEN PROBLEM

Q: [felsner, Liotta, Wumath '01]

Do planar graphs have O(n) volume 3D grid drawings?

planar: $\theta(n^2) \rightarrow \theta(n^{3/2}) \rightarrow \theta(n \log^c n) \rightarrow \theta(n \log n) \rightarrow \theta(n)$

LINEAR VOLUME

E-TRACK LAYOUT

- $\{V_1, V_2, ..., V_t\}$ vertex colouring • total order $\{i \text{ of each } Vi \text{ (track)}\}$
- no X-crossing

set reix and yej w

why seace layouts?

Every graph 6 with the trace layout has a 3D guid drawing in O(ton) volume.

O(xon)

EXAMPLES: Kn,n

$$fn(kn,n) = m+1$$

EXAMPLES: TREES

EXAMPLES: TREES

 $4n(tree) \leq 3$

WRAPPING LEMMA

EXAMPLES: GRID

EXAMPLES: GRID

EXAMPLES: GRID

Span -> on

track layout: $2(V_{i, \leq i}): 1 \leq i \leq t$?

with edge span $s \Rightarrow h(6) \leq 2.8 + 1$.

pon -> In

track (ayout: $2(Vi, < i): 1 \le i \le t$ }

with edge span s = b $ch(6) \le 2.8 + 1$.

Moss surden

HISTORY

Q1:

Do planar graphs have O(1) track num?

(50(n) 3D grid grawing

HISTORY

Q1:

Do planar graphs have O(1) track num?

(90(n) 3D grid grawing

Q2: [Heath, leighton, Rosenberg: SICOMP, SIDMA '92]

Do planar graphs have O(1) queue num?

Sconjectured PES

Q1=Q2

TRACK NUMBER

• O(Vn) was best known for 20+ years

TRACK NUMBER

- O(Th) was best known for 20 years
- [FOCS 2010, De Battista, Frati, Pach]

- O(log^sn)

 IFOCS 2013, D., Morin, Wood J O(Wgh)
- [2019 D., Joret, Micer, Harrin, Mcckerdt, Wood) O(1)

1001: Product Structure

Ranking Graph Classes by Complexity

Simple

- paths (forests of paths)
- trees (forests)
- ▶ k-Trees (graphs of treewidth at most k)
- planar graphs
- proper-minor closed families
- bounded expansion
- ▶ all graphs

Complicated

Ranking Graph Classes by Complexity

Simple

- paths (forests of paths)
- trees (forests)
- ▶ k-Trees (graphs of treewidth at most k)
- planar graphs
- proper-minor closed families
- bounded expansion
- all graphs

Complicated

Ranking Graph Classes by Complexity

Simple

- paths (forests of paths)
- trees (forests)
- k-Trees (graphs of treewidth at most k)
- planar graphs
- proper-minor closed families
- bounded expansion
- ▶ all graphs

Complicated

minor-closed classes

graph minor structure theorem

structure of planar graphs

product structure

Informally

► Can we *factor* a planar graph into simpler graphs?

structure of planar graphs

theorem [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '19] every planar graph G is a subgraph of $H \boxtimes P$ for some graph H with treewidth $\leqslant 8$ and some path P

structure of planar graphs

theorem [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '19] every planar graph G is a subgraph of $H \boxtimes P$ for some graph H with treewidth ≤ 8 and some path P

strong product

- $V(A \boxtimes B) := V(A) \times V(B)$
- (a_1, b_1) and (a_2, b_2) are adjacent if and only if:
 - $a_1 = a_2$ and $b_1 b_2 \in E(B)$;
 - $a_1a_2 \in E(A)$ and $b_1 = b_2$; or
 - $a_1a_2 \in E(A)$ and $b_1b_2 \in E(B)$.

The Strong Graph Product ⊠

- $V(A \boxtimes B) := V(A) \times V(B)$
- (a_1, b_1) and (a_2, b_2) are adjacent if and only if:
 - ▶ $a_1 = a_2$ and $b_1 b_2 \in E(B)$;
 - ▶ $a_1a_2 \in E(A)$ and $b_1 = b_2$; or
 - ▶ $a_1a_2 \in E(A)$ and $b_1b_2 \in E(B)$.

The Strong Graph Product ⊠

- $V(A \boxtimes B) := V(A) \times V(B)$
- \triangleright (a_1, b_1) and (a_2, b_2) are adjacent if and only if:
 - ▶ $a_1 = a_2$ and $b_1 b_2 \in E(B)$;
 - ▶ $a_1a_2 \in E(A)$ and $b_1 = b_2$; or
 - ▶ $a_1a_2 \in E(A)$ and $b_1b_2 \in E(B)$.

The Strong Graph Product ⊠

- $V(A \boxtimes B) := V(A) \times V(B)$
- \triangleright (a_1, b_1) and (a_2, b_2) are adjacent if and only if:
 - ▶ $a_1 = a_2$ and $b_1 b_2 \in E(B)$;
 - $ightharpoonup a_1 a_2 \in E(A) \text{ and } b_1 = b_2; \text{ or }$
 - ▶ $a_1a_2 \in E(A)$ and $b_1b_2 \in E(B)$.

cartesian, direct, strong product

Fig. 4: Examples of graph products: (a) cartesian, (b) direct, (c) strong.

structure of planar graphs

theorem [Dujmović, Joret, Micek, Morin, Ueckerdt, Wood '19] every planar graph G is a subgraph of $H \boxtimes P$ for some graph H with treewidth ≤ 8 and some path P

what is it good for?

 $G \subseteq H \boxtimes P$

► *H* is a graph of treewidth at most 8

- ► *H* is a graph of treewidth at most 8
- ► Many problems are easy for *H*

- ► *H* is a graph of treewidth at most 8
- ► Many problems are easy for *H*
- ightharpoonup Extending a solution from H to $H \boxtimes P$ is sometimes easy

- ► *H* is a graph of treewidth at most 8
- ► Many problems are easy for *H*
- ightharpoonup Extending a solution from H to $H \boxtimes P$ is sometimes easy
- Examples:

$G \subseteq H \boxtimes P$

- H is a graph of treewidth at most 8
- Many problems are easy for H
- \blacktriangleright Extending a solution from H to $H \boxtimes P$ is sometimes easy
- Examples: __|992

→ queue number 35 grid deavings -> 2002

- H is a graph of treewidth at most 8
- ► Many problems are easy for *H*
- ightharpoonup Extending a solution from H to $H \boxtimes P$ is sometimes easy
- Examples:
 - queue number
 - ▶ nonrepetitive colouring 2002

- H is a graph of treewidth at most 8
- Many problems are easy for H
- ightharpoonup Extending a solution from H to $H \boxtimes P$ is sometimes easy
- Examples:
 - queue number
 - nonrepetitive colouring
 - p-centered colouring

- ► *H* is a graph of treewidth at most 8
- ► Many problems are easy for *H*
- ightharpoonup Extending a solution from H to $H \boxtimes P$ is sometimes easy
- Examples:
 - queue number
 - nonrepetitive colouring
 - p-centered colouring
 - ▶ ℓ-vertex ranking

- ► *H* is a graph of treewidth at most 8
- ► Many problems are easy for *H*
- ightharpoonup Extending a solution from H to $H \boxtimes P$ is sometimes easy
- Examples:
 - queue number
 - nonrepetitive colouring
 - p-centered colouring
 - ▶ \(\ell \)-vertex ranking
 - ▶ adjacency labelling (universal graphs) 💔

- H is a graph of treewidth at most 8
- ► Many problems are easy for *H*
- ightharpoonup Extending a solution from H to $H \boxtimes P$ is sometimes easy
- Examples:
 - queue number
 - nonrepetitive colouring
 - p-centered colouring
 - ▶ ℓ-vertex ranking
 - adjacency labelling (universal graphs)

Back do track mumber of planar graphs